Ane-Sofie Bednarczyk Hansen
Senior Engineer
(+47) 924 87 180
ane-sofie.hansen@nibio.no
Place
Svanhovd
Visiting address
Svanhovd, NO-9925 Svanvik
Authors
Paul Eric Aspholm David Kniha Hans Geir Eiken Snorre Hagen Ida Marie Bardalen Fløistad Ingrid Helle Søvik Ane-Sofie Bednarczyk Hansen Simo Maduna Cornelya Klutsch Finn-Arne HaugenAbstract
No abstract has been registered
Abstract
Aim Effective management of non-indigenous species requires knowledge of their dispersal factors and founder events. We aim to identify the main environmental drivers favouring dispersal events along the invasion gradient and to characterize the spatial patterns of genetic diversity in feral populations of the non-native pink salmon within its epicentre of invasion in Norway. Location Mainland Norway and North Atlantic Basin. Methods We first conducted SDM using four modelling techniques with varying levels of complexity, which encompassed both regression-based and tree-based machine-learning algorithms, using climatic data from the present to 2050. Then, we used the triple-enzyme restriction-site associated DNA sequencing (3RADseq) approach to genotype over 30,000 high-quality single-nucleotide polymorphisms to elucidate the patterns of genetic diversity and gene flow within the pink salmon putative invasion hotspot. Results We discovered temperature- and precipitation-related variables drove pink salmon distributional shifts across its non-native ranges and that climate-induced favourable areas will remain stable for the next 30 years. In addition, all SDMs identified north-eastern Norway as the epicentre of the pink salmon invasion, and genomic data revealed that there was minimal variation in genetic diversity across the sampled populations at a genome-wide level in this region. While utilizing a specific group of ‘diagnostic’ SNPs, we observed a significant degree of genetic differentiation, ranging from moderate to substantial, and detected four hierarchical genetic clusters concordant with geography. Main Conclusions Our findings suggest that fluctuations in climate extreme events associated with ongoing climate change will likely maintain environmental favourability for the pink salmon outside its ‘native’/introduced ranges. Locally invaded rivers are themselves potential source populations of invaders in the ongoing secondary spread of pink salmon in Northern Norway. Our study shows that SDMs and genomic data can reveal species distribution determinants and provide indicators to aid in post-control measures and potentially inferences about their success.
Authors
David Kniha Paul Eric Aspholm Ida Marie Bardalen Fløystad Ane-Sofie Bednarczyk Hansen Ingrid Helle Søvik Sari Magga Rolf Randa Lisbet H. Baklid Tuomo Ollila Snorre Hagen Hans Geir EikenAbstract
Since 2005, the population of the trans-border brown bear (Ursus arctos) in Trilateral Park Pasvik-Inari (Norway-Finland-Russia) has been monitored by using genetic analyses of hair and faeces collected randomly in the field. A more systematic method using hair traps every fourth year was initiated in 2007 to collect brown bear hairs for genetic analysis. The method consisted of 56 hair traps in Norway, Finland and Russia in a 5 x 5 km2 grid cell system (ca 1400 km2). The project was repeated in 2011, 2015, 2019 and now in 2023. This season’s sampling was carried out in Pasvik (Norway) - Inari (Finland) area (43 squares, 1075 km2), using the same methodology as in the previous studies. A total of 97 samples were collected, where 45 samples came from Finland and 52 samples from Norway. In the bear specific analysis, 71 (73 %) of the 97 hair samples were positive. A complete DNA profile could be determined for 63 of the positive samples. In total, 22 different bear individuals were detected (10 females and 12 males). Of these 22 bears, 12 bears were detected in previous years, while 10 were previously unknown bears. In total, 13 bears were detected in Finland and 11 bears in Norway. This year’s sampling has the 2nd highest success rate in number of individuals detected per grid square, with 0,51 individual per grid square compared to 0,81 individuals in 2019 (highest success rate), 0,49 in 2015, 0,35 in 2011 and 0,42 in 2009. Our results showed that even with a smaller study area, the hair trap project every 4th year provides valuable information on the brown bear individuals in addition to a random sampling in the field (The National Monitoring Program for brown bears in Norway).