Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2021

Til dokument

Sammendrag

This study evaluated the effects of bio-based carbon materials on methane production by anaerobic digestion. The results showed that biochar and hydrochar can promote cumulative methane yield by 15% to 29%. However, there was no statistical significance (p > 0.05) between hydrochar and biochar produced at different temperature on methane production. 16S rRNA gene sequencing and bioinformatics analysis showed that biochar and hydrochar enriched microorganism that might participate in direct interspecies electron transfer (DIET) such as Pseudomonadaceae, Bacillaceae, and Clostridiaceae. The the surface properties of the modified biochar were characterized with BET, Raman, FTIR and XPS. Bio-based carbon materials with uniform dispersion provided a stable environment for the DIET of microorganisms and electrons are transferred through aromatic functional groups on the surface of materials. This study reveals bio-based carbon materials surface properties on methane production in anaerobic digestion and provides a new approach to recycling spent coffee grounds.

Til dokument

Sammendrag

Greenhouses are complex systems whose size, shape, construction material, and equipment for climate control, lighting and heating can vary largely. The greenhouse design can, together with the outdoor weather conditions, have a large impact on the economic performance and the environmental consequences of the production. The aim of this study was to identify a greenhouse design out of several feasible designs that generated the highest net financial return (NFR) and lowest energy use for seasonal tomato production across Norway. A model-based greenhouse design method, which includes a module for greenhouse indoor climate, a crop growth module for yield prediction, and an economic module, was applied to predict the NFR and energy use. Observed indoor climate and tomato yield were predicted using the climate and growth modules in a commercial greenhouse in southwestern Norway (SW) with rail and grow heating pipes, glass cover, energy screens, and CO2-enrichment. Subsequently, the NFR and fossil fuel use of five combinations of these elements relevant to Norwegian conditions were determined for four locations: Kise in eastern Norway (E), Mære in midwestern Norway (MW), Orre in southwestern Norway (SW) and Tromsø in northern Norway (N). Across designs and locations, the highest NFR was 47.6 NOK m−2 for the greenhouse design with a night energy screen. The greenhouse design with day and night energy screens, fogging and mechanical cooling and heating having the lowest fossil energy used per m2 in all locations had an NFR of −94.8 NOK m−2. The model can be adapted for different climatic conditions using a variation in the design elements. The study is useful at the practical and policy level since it combines the economic module with the environmental impact to measure CO2 emissions.

Til dokument

Sammendrag

In addition to the rapidly expanding field of using microalgae for food and feed, microalgae represent a tremendous potential for new bioactive compounds with health-promoting effects. One field where new therapeutics is needed is cancer therapy. As cancer therapy often cause severe side effects and loose effect due to development of drug resistance, new therapeutic agents are needed. Treating cancer by modulating the immune response using peptides has led to unprecedented responses in patients. In this review, we want to elucidate the potential for microalgae as a source of new peptides for possible use in cancer management. Among the limited studies on anti-cancer effects of peptides, positive results were found in a total of six different forms of cancer. The majority of studies have been performed with different strains of Chlorella, but effects have also been found using peptides from other species. This is also the case for peptides with immunomodulating effects and peptides with other health-promoting effects (e.g., role in cardiovascular diseases). However, the active peptide sequence has been determined in only half of the studies. In many cases, the microalga strain and the cultivation conditions used for producing the algae have not been reported. The low number of species that have been explored, as opposed to the large number of species available, is a clear indication that the potential for new discoveries is large. Additionally, the availability and cost-effectiveness of microalgae make them attractive in the search for bioactive peptides to prevent cancer.

Til dokument

Sammendrag

Berry fruits (such as strawberry – Fragaria × ananassa, raspberry – Rubus idaeus, blackberry – Rubus fruticosus, currants – Ribes sp., blueberry – Vaccinium sp., and many others) are known for their health benefits due to their richness in sugars, acids, vitamins, minerals, phenolics, and other nutrients. However, their contents are influenced by various factors, such as species, berry cultivar, ripeness, geographical origin, and growing conditions, and the type of extraction and processing of raw seed material. Generally, the berry industry for juice and fruit-wine production produces vast amounts of by-products (mostly seeds). Since berry seeds contain lipids, these by-products are very interesting as a raw material for oil production. As berry seed oil production generates certain waste, strategies towards reducing and valorizing need to be developed. Unlike beery fruits and berry seed oil, whose composition has been tested many times so far, berry seed oil by-products were the subject of a small number of published papers. Due to chemical richness and heterogeneity, it is expected that berry seed oil by-products to be promising natural bio-resource. Still, it is necessary to consider how many other biologically valuable compounds remain in seed waste.

Til dokument

Sammendrag

Persian walnut (or English walnut) growing dates back to 7000 BC in Persia, a gene center of Juglans regia L. The top leading countries in walnut production are China, the USA, and Iran accounting for ~75% of world production. Nuts are an essential component in human nutrition because their consumption provides the required amount of energy (720 kcal per 100 g of fruits), unsaturated fatty acids, carbohydrates, proteins, fibers, sterols, tocopherols, minerals (K, P, Ca, Mg, and Na), volatiles, and other bioactive constituents. In addition, walnut kernels are rich in oil (50–70%) and protein, depending on the cultivar, location, and irrigation rate. Although mostly consumed raw, walnut kernels are increasingly processed by cold pressing into light yellow edible oil used in foods as flavoring, like salad dressings or cooking. Walnut oil is especially valued for its high content of essential fatty acids (linoleic and linolenic acids) and micronutrients such as phytosterols, squalene, and other tree nut oils polyphenols, and tocopherols. As by-products, both shell and cold-pressed cake from walnut that remains after the cold pressing process of oil can be used in various ways (food, cosmetics, pharmaceutical products, or textile industry). Especially residual walnut press cake is practical when used in food and in pharmacy, mostly integrated into other products. The reason for treating residual cake as a value-added product lies in the fact that defatted cake is generally rich in polar phenolic compounds and, as a source of natural antioxidants, is expected to show significant antioxidant activity. The most abundant polyphenols found in walnut oil cake are hydrolyzable tannins. In addition, press cake is rich in dietary fiber, protein, residual oil, polyunsaturated fatty acids, and tocopherol, all considered health-enhancing components. Therefore, by using walnut oil cake as a low-cost product, many aspects connected with the valorization of food wastes are covered, such as consumers' dietary habits, economy, and environmental protection.

Sammendrag

Biochar-based fertilizer products (BCF) are receiving increasing attention as potential win-win solutions for mitigating climate change and improving agricultural production. BCFs are reported to increase yields through increased N use efficiency, an effect which is often assumed to result from the slow-release of adsorbed N forms into the soil. Here, we review the magnitude of this effect, the potential for further improvement and the need to consider other mechanisms in product development. Current high-N commercial BCFs are mostly physical blends of biochar and mineral fertilizer, with little evidence of slow-release effects supported by sorption mechanisms. For such products, the main effect potentially results from root-growth promoting factors and from increases in soil pH and Eh and stimulation of beneficial micro-organisms in the rhizosphere, which all result in an increase in uptake of specific nutrients. Our reanalysis of literature data indicates that the median sorption capacity of untreated biochar for mineral N forms requires applying 200 times more biochar than N fertilizer. This ratio needs reducing by at least an order of magnitude for producing efficient sorption-based BCFs. Activation of biochar with acids and oxidizing agents, as reported in many studies, appears to only marginally increase sorption capacity in absolute values. Fixation of clay and organics within the porous structure of biochar appears a more promising technology, suggesting that macro- and mesoporosity is a key biochar property that deserves greater scrutiny and research towards making efficient sorption-based BCFs. Mechanisms of action and dose responses need to be more systematically studied in order to devise products that combine positive effects and can be used within realistic agronomic management practices. Long-term effects resulting from accumulated annual inputs of BCF also need to be better evaluated in terms of nutrient cycling and the progressive improvement of soil health.