Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

1993

Sammendrag

Embryogenic cultures of red spruce (Picea rubens Sarg.) and Norway spruce (Picea abies (L.) Karst.) were initiated from dissected mature zygotic embryos. The tissues were grown on either proliferation medium or maturation medium. On proliferation medium, the embryogenic tissue continued to produce early stage somatic embryos (organized meristems attached to elongated, suspensor-like cells), whereas on maturation medium fully mature embryos developed from the embryonic tissue. Analysis of polyamines in tissues grown on these two media showed that: both putrescine and spermidine concentrations were always higher in cultures grown on proliferation medium than in cultures grown on maturation mediumin both species, spermidine concentrations declined with time in the tissues grown on maturation medium spermine was present in only minute quantities and showed only a small change with time. The presence of difluoromethylomithine in the culture medium had little effect on polyamine concentration, whereas the presence of difluoromethylarginine caused a decrease in putrescine concentrations in both red spruce and Norway spruce tissues grown on proliferation medium or maturation medium.

Sammendrag

Root dieback of Picea abies (L) Karst., Norway spruce, seedlings is a serious problem in Scandinavian forest nurseries. We have chosen spruce seedlings infected with a pathogenic Pythium sp. isolate as an experimental system to study the interaction between the roots of a gymnosperm and a pathogen at the protein level. In this infection system, necroses on the hypocotyl and browning of the upper part of the roots appear within 2 days. Within 10 days the seedlings are completely wilted. Low pH soluble PR-proteins from infected and uninfected roots have been resolved on isoelectrofocusing (IEF) gels. Chitinases, chitosanases and β-1,3-glucanases have been detected enzymatically after IEF. Our results show that more than 30 different pathogenesis-related (PR) proteins accumulated in roots after pathogen infection. PR proteins of low and high isoelectric points appeared within 2 days after infection. In uninfected plants, only one acidic protein was detected. Eight different isoforms of chitinases accumulated after pathogen infection. Two acidic chitinases were constitutively expressed, and one of these strongly accumulated following pathogen infection. Three chitosanase activities were observed in infected plants, while no chitosanase activity was detected in uninfected plants. Also, no β-1,3-glucanase activity was observed in uninfected plants. One acidic β-1,3-glucanase was detected in infected roots after the second day of infection. A second acidic β-1,3-glucanase of relatively higher pI was detected on the fourth day. To our knowledge, this is the first report describing the response of gymnosperm roots to pathogen infection at the protein level. For the first time, we show that PR proteins accumulating after pathogen infection also include chitosanases. It can be concluded from our results that although gymnosperms are evolutionarily very distant from angiosperms, in terms of the production of PR proteins the response of gymnosperm roots resembles that observed in angiosperms.