Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2006

Sammendrag

The concentrations of carbon monoxide (CO) and other gases were measured in the emissions from solid waste degradation under aerobic and anaerobic conditions during laboratory and field investigations. The emissions were measured as room temperature headspace gas concentrations in reactors of 1, 30, and 150 L, as well as sucked gas concentrations from windrow composting piles and a biocell, under field conditions. The aerobic composting laboratory experiments consisted of treatments with and without lime. The CO concentrations measured during anaerobic conditions varied from 0 to 3000 ppm, the average being 23 ppm, increasing to 133 ppm when methane (CH4) concentrations were low. The mean/maximum CO concentrations during the aerobic degradation in the 2-L reactor were 101/194 ppm without lime, 486/2022 ppm with lime, and 275/980 ppm in the 150-L reactors. The presence of CO during the aerobic composting followed a rapid decline in O2 concentrations Significantly higher CO concentrations were obtained when the aerobic degradation was amended with lime, probably because of a more extreme depletion of oxygen. The mean/maximum CO concentrations under field conditions during aerobic composting were 95/1000 ppm. The CO concentrations from the anaerobic biocell varied from 20 to 160 ppm. The hydrogen sulfide concentrations reached almost 1200 ppm during the anaerobic degradation and 67 ppm during the composting experiments. There is a positive correlation between the CO and hydrogen sulfide concentrations measured during the anaerobic degradation experiments.

Sammendrag

Road blocking due to thawing or heavy rains annually contributes to a considerable loss of profit in Swedish forestry. Companies have to build large stocks of sawlogs and pulplogs to secure a continuous supply during periods where the accessibility of the road network is uncertain. This storage leads to quality deterioration, which means loss in profit. One approach to reduce the losses due to blocked roads is to upgrade the road network to a standard that guarantees accessibility throughout the year. This article describes a decision support system called RoadOpt for the planning of forest road upgrading. The planning horizon is about one decade. The system uses a Geographical Information System (GIS)-based map user interface to present and analyse data and results. Two important modules are the Swedish road database, which provides detailed information about the road network, and an optimization module consisting of a mixed integer linear programming model. A case study from a major Swedish company is presented.

Sammendrag

In the traditional EIA procedure environmental vulnerability is only considered to a minor extent in the early stages when project alternatives are worked out. In Norway, an alternative approach to EIA, an integrated vulnerability model (IVM), emphasising environmental vulnerability and alternatives development in the early stages of EIA, has been tried out in a few pilot cases. This paper examines the content and use of the vulnerability concept in the IVM approach, and discusses the concept in an EIA context. The vulnerability concept is best suited to overview analyses and large scale spatial considerations. The concept is particularly useful in the early stages of EIA when alternatives are designed and screened. By introducing analyses of environmental vulnerability at the start of the EIA process, the environment can be a more decisive issue for the creation of project alternatives as well as improving the basis for scoping. Vulnerability and value aspects should be considered as separate dimensions. There is a need to operate with a specification between general and specific vulnerability. The concept of environmental vulnerability has proven useful in a wide range of disciplines. Different disciplines have different lengths of experience regarding vulnerability. In disciplines such as landscape planning and hydrogeology we find elements suitable as cornerstones in the further development of an interdisciplinary methodology. Further development of vulnerability criteria in different disciplines and increased public involvement in the early stages of EIA are recommended.

Sammendrag

In terms of agricultural use, peat soils have weak structure, high water content, insufficient soil aeration and poor thermal properties resulting in suboptimal physical properties and yields of grass. During the period 1978 - 1995, a long-term field trial was conducted on highly decomposed peat soil in order to investigate the impact of adding mineral materials to improve soil characteristics and increase grass yield. Shell sand or moraine soil (200, 400 or 800 m(3) ha(-1)) was incorporated into peat soil. Generally, addition of both shell sand and moraine soil improved the physical properties of the soil and grass production. During the first nine years, shell sand ( 400 m 3 ha(-1)) was the most efficient. Thereafter, moraine soil ( 400 and 800 m(3) ha(-1)) seemed most beneficial. This study indicates that additions of shell sand or moraine soil to peat are appropriate methods to improve and conserve the physical properties and cropping potential of these vulnerable soils.