Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2024

Sammendrag

Successful introduction of the new cultivars requires proper pomological, phenological and as well as technological evaluation. It is particularly important at the harsh Norwegian climate conditions. Investigations were conducted with apple cultivar ‘Eden‘ / ‘Wursixo‘ (WUR 6), with the aim to establish an optimal balance between yield, fruit quality and bearing regularity. Four different crop load levels were tested in 3 consecutive years in the orchard planted 3.5 x 1 m and trained as slender spindle. Lower crop load levels guaranteed good return bloom, a very high share of fruits harvested during the first picking, and larger fruits. Increasing crop load led to less intensive return bloom, smaller fruit sizes and higher share of fruits harvested during the second picking. It was found that ‘Eden‘ is strictly alternating cultivar and precise crop load levels according to the tree age and tree vigour were defined. In order to keep ‘Eden‘ trees in regular bearing mode crop load levels should be maintained at 4.5-5 fruits cm-2 of trunk cross-sectional area (TCSA) in the 3rd and 6-7 fruits in the 4th growing season

Sammendrag

In the frame of EUFRIN apple rootstock trials, seven apple rootstocks are being tested for their resistance to ARD (apple replant disease) in several European countries. Current paper focus on the rootstock and soil type (ARD vs. fresh soil) effect on the accumulation of phenolic compounds in apple fruit. This research was performed at the Lithuanian trial site. Accumulation of phenolics compounds in fruit tissues was enhanced at replant soil. On the average of all rootstocks, total phenol content in fruit flesh increased by 25%, and in fruit peel by 31%. Hyperoside and rutin in fruit flesh and hyperoside, reynoutrin, phloridzin and procyanidin C1 were the most variable among detected phenolic compounds and their content in fruits from ARD soil was by 50 – 77 % higher than in fruits from the fresh soil. Content of (-) epicatechin in fruit flesh and (+) catechin and procyanidin B1 in fruit peel was similar in both ARD and fresh soil. Rootstock had a significant effect on the accumulation of phenolic compounds, but this effect was modified by soil conditions. Soil type had no effect on total phenol accumulation in fruits (flesh and peel) grown on Pajam 2 rootstock. Also, a stable phenol content in fruit flesh was on G.11 and M200 rootstocks, and in fruit peel on G.41. The highest increase of total phenol content at replant conditions was recorded on B.10 (by 66% in flesh and 60% in peel) and on G.935 (by 68% in flesh and 47% in peel) rootstocks.

Til dokument

Sammendrag

Background: Soil water and organic carbon (C) are key factors affecting the growth and development of apple seedlings. The objective of the study was to investigate the effects of different soil moisture and glucose supplies on apple seedling growth and soil enzyme activities. We hypothesized that the growth of apple seedlings was affected by soil water and C content through their effects on root structure, plant physiological properties and soil enzymatic activities. A pot experiment consisting of nine treatments was set up, including three water treatments with soil moisture contents at 75–85% (normal irrigation, CK), 65–75% (light water stress, LS), and 55–65% (mild water stress, MS) of the soil field capacity, in combination with three glucose treatments with carbon/nitrogen (C/N) ratio of 7.5 (C1, no adding glucose), 10 (C2) and 15 (C3), respectively. Results: Results showed that the LSC2 treatment significantly increased plant height by 7%, stem diameter by 5% and leaf area by 17%, as compared with LSC1. Also, LSC2 significantly increased root dry weight, root vitality and soil enzyme activities. Moreover, results of leaf photosynthetic, malondialdehyde (MDA), peroxidase (POD), superoxide dismutase (SOD) and proline contents also proved that adding glucose improved the drought resistance of plants. Conclusion: LSC2 treatment is more conducive to the growth of apple seedlings, and application of carbon has a good alleviation effect on plant water stress. The study demonstrated that addition of exogenous glucose alleviated light water deficiency, significantly affected root vitality, and promoted apple seedling growth. © 2024 Society of Chemical Industry.