Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2011

Sammendrag

CORINE Land Cover (CLC) er en sammenstilling av nasjonale arealdekkekart som til sammen utgjør et sømløst arealdekkekart for Europa. Kartet er laget i henhold til standardiserte krav til geometri og nomenklatur. CLC2000 ble ferdigstilt for Norge høsten 2008. Høsten 2009 ble også CLC2006 ferdig. Kartene skal i prinsippet representere arealdekket i Europa i hhv. år 2000 og år 2006. Med disse produktene inngår Norge i et felles europeisk arealdekkekart. CLC er oversiktskart som viser bebyggelse, jordbruk, skog, annen fastmark, myr og vann. Kartene foreligger på tre nivåer med 5, 15 og 44 klasser. I Norge er hhv. 5, 14 og 31 klasser representert. Kartene er egnet til visualisering av arealdekket i Norge i målestokk mindre enn ca 1:250 000. CLC har minsteareal på 250 dekar. Hverken CLC2000- eller CLC2006-data kan brukes til å undersøke arealdekket lokalt eller regionalt i Norge. Datasettene bør heller ikke brukes til å lage statistikk for hele eller deler av landet. I et så forenklet datasett som CLC vil arealtallene alltid være forventningsskjeve. Klasser som er sjeldne, blir som oftest underrepresentert, og klasser som er dominerende, blir som oftest overrepresentert. Datasettene er laget med hensikt å komplettere det europeiske miljøbyråets (EEA) ”CORINE Land Cover”-database for Europa og for å oppnå et homogent europeisk arealdekkekart til bruk i europeisk målestokk. CORINE Land Cover inngår som ett av fire arealressurskart (AR5, AR50, AR250 og CLC) ved Norsk institutt for skog og landskap. CLC er produsert med støtte fra EEA og Miljøverndepartementet. EEA har delt eierskap til CLC. I Norge distribueres CLC fritt gjennom den nasjonale geodatainfrastrukturen Norge digitalt.

Sammendrag

Mined phosphorus (P) is introduced to food production from mineral fertilizers and feedstuffs, where fertilizer is the most important. Only a small part of this P ends up on our forks. The agricultural soil itself is the most important sink for mined P in Norway. An extensive surplus of manure P in livestock-dense areas is one of the factors explaining lack of efficiency in P utilization in plant production. However, on the way from the fields to the fork phosphorus is lost in many waste streams - the most important being slaughtering waste. In addition to slaughtering waste, wastewater is the dominant sink for phosphorus from society. As a seafood producer, Norway also harvests considerable amounts of P from the sea – which is an interesting alternative source of P. There are large potentials in replacing mined P with recycled P, and the poster depicts some of the future phosphorus loops looked into in Norway.

Sammendrag

Vegetation height information is one of the most important variables for predicting forest attributes such as timber volume and biomass. Although airborne laser scanning (ALS) data are operationally used in forest planning inventories in Norway, a regularly repeated acquisition of ALS data for large regions has yet to be realized. Therefore, several research groups analyze the use of other data sources to retrieve vegetation height information. One very promising approach is the photogrammetric derivation of vegetation heights from overlapping digital aerial images. Aerial images are acquired over almost all European countries on a regular basis making image data readily available. The Norwegian Forest and Landscape Institute (Skog og Landskap) invited researchers and practitioners that produce and utilize photogrammetric data to share their experiences. More than 30 participants followed the invitation and contributed to a successful event with interesting presentations and discussions. We wish to thank the speakers for their contributions and hope that all participants found the seminar useful. These short proceedings of the seminar include summaries of the talks. The presentations, which provide more information, can be found at the end of this document.

Sammendrag

In 1955 the potato cyst nematode was recorded for the first time in Agder. This detection produced the initial legislation of PCN control, and was implemented based on the statutory regulation of 1916. Since 1956 PCN was given quarantine status in infested agricultural land and home gardens. Official controls of certified seed potatoes started in 1939. Each year about 3000 soil samples are analyzed for PCN to clear areas for certified seed potato production.  These areas are so far free of PCN. The total acreage with seed potatoes in 2009 was 813.7 Ha. Extensive surveys started in 1955; and were carried uninterrupted until the end of the 1990ties. These surveys included producing potato agricultural land and home gardens. In 2009 a new national survey program for the principal potato districts has started, the surveys is aimed to update the PCN occurrence. The surveys will continue during the subsequently years until all major potato areas will be cover.  Statutory regulations for PCN from 1956-2010 to Support to Norwegian Food Safety Authority The regulations have without doubt contributed in preventing PCN infestations in the seed potato areas, and probably also prevented further spreading of wPCN and virulent yPCN as each the find has been placed under quarantine. Permanent grass as a statutory regulation in home garden plots may have contributed to reduce the spread of wPCN to commercial fields. The regulations have most probably made possible the early reduction in use of chemical fumigants, organophosphates or carbamate nematicides.  These chemicals have not been used since the early 1970s. The domestic production of seed potato has been kept free of PCN by frequent inspections and analyses for more than 50 years. The fact that farmers are not allowed to import seed potatoes adds to the level of security. New project Studies on the biology of potato cyst nematodes (Globodera spp.) under Nordic conditions for improving management and regulation in Norway. Major goal is to increase the scientific basis for amending the management system for PCN, Globodera spp under Nordic conditions.

Sammendrag

In Norway PCN was recorded in 1955. This resulted in extensive surveys and implementation of statutory rules. Regular surveys until the 1990s revealed PCN to occur in 6406 properties. The first statutory regulation for PCN appeared in 1956, and prohibited the introduction and spread of PCN with soil and plant materials. Before the early 1970:ties control strategies included the use of nematicides (fumigants, organophosphates and carbamate) and resistant potato cultivars. The distribution of species and pathotypes is of crucial importance for mangement. The yellow species Globodera rostochiensis (yPCN) occurs in the pathotypes Ro1, Ro2, and Ro3, while the white species G. pallida (wPCN) has been detected in the pathotypes Pa1, Pa2 and Pa3. The most common pathotype Ro1 constitutes 98% of total finds. Recently the detections of wPCN and yPCN Ro3 in ware potato fields have increased. Today non-virulent G. rostochiensis is managed with crop rotations using non-host crops and alternating susceptible and resistant potato. The use of certified seed potato is important. Detection of G. pallida or virulent G. rostochiensis results in statutory regulation (at least 40-years ban on growing potato). Generally Norwegian potato cultivars have the resistance gen, Gro-1 (H1) from Solanum tuberosum ssp. andigena. In Norway great emphasis has been placed on documenting freedom of PCN in areas for certified seed potatoes. In 2009 a national survey of ware potato land was initiated. The use of early potato and Solanum sisymbriifolium as trap crops, and the significance of micro-organisms antagonistic to PCN are considered in current research. Norwegian regulations have prevented PCN infestations in the seed potato areas, and reduced spread of wPCN and virulent yPCN. A better prognosis of rates of decline in PCN numbers and infectivity in fields could allow for a reduction in the quarantine period and improve the economy of farmers and enterprises.