Ivar Gjerde

Research Professor

(+47) 915 15 139
ivar.gjerde@nibio.no

Place
Bergen

Visiting address
Thormøhlensgate 55, 5006 Bergen

Abstract

1. The results of nature restoration efforts have been characterized as notoriously unpredictable. Many variables impact the trajectory of species communities towards recovery, and ecological theory that takes traits, habitat configuration and scale into account, can improve models. However, the most important questions regarding the predictability of species community restoration may be related to stochasticity. 2. We investigated the assembly of a cyanolichen community in a chronosequence consisting of 88 new forest patches (30–140+ years old) comprising today 0.4% of a 170 km2 former treeless heathland area in south-western Norway. Two complete inventories were carried out 12 years apart, and we (1) tested inferences on colonization status and recovery time based on the first inventory only; (2) investigated the recovery of the lichen community by changes in species richness, species density and composition at three different spatial scales; and (3) discussed how dispersal capacity and stochasticity affect community recovery in general. 3. Colonization of sites by lichen species exceeded extinctions in young sites but not in old sites, and in the second inventory, the richness of species weighed by occurrences no longer differed significantly between young and old sites at landscape scale. However, the differences between old and young sites depended on the spatial scale and method of measurement. 4. In accordance with inferences based only on the first inventory, colonization and extinction dynamics indicated that recovery of species richness in our study system will take 90–120 years at the landscape scale, whereas recovery of species composition was difficult to determine due to idiosyncratic development among sites. 5. Synthesis and applications. Using species composition as a template for the evaluation of restoration recovery in systems with a high degree of stochastic colonization and extinction is problematic, particularly at finer scales. Ideally, comparisons of restoration and reference communities should therefore be at large enough spatial scale to cancel out the major effects of stochasticity at finer scales. Furthermore, we suggest that a complete recovery of species numbers may not be needed as an indicator of restoration success if species richness measurements indicate that communities are en route to recovery.

Abstract

Background: Tardigrades are common in most habitats, however few studies have focusedon large faunistic survey, specifically on tardigrade diversity in forests. Up to now, only 61 species have been recorded in different types of forest in Norway with an additional 25 found in limnic environments in forests. Although little is known about the ecological preferences of many species, previous studies have found that tardigrade diversity and community composition are significantly affected by ecological variables. In this study we associate georeferenced tardigrade species records with forest type, substrate type and substrate composition in order to see if tardigrade diversity and species communities can be associated with ecological characteristics of Norwegian forests. Methods: In total 390 moss, lichen and litter samples were collected from 12 forests in central and southern Norway in the summers of 2017 and 2018 and later stored in paper envelopes. For the identification modern literature and keys for specific genera and groups of species were used. For statistical analyses, moss and lichen substrate of each sample was classified according to the main species, life form, growth forms and habitat of substrate and associated with each tardigrade identification and sample metadata. Results: A total of 17 407 specimens were identified, encompassing in total 132 species (including some new species). Species richness increases with precipitation, but does not change with temperature or precipitation seasonality. The distribution of species richness between life forms and forest types showed considerable variation within and among the variables. Disregarding variables with low sample numbers, among life forms only acrocarpous moss samples appeared to deviate with respect to species richness, containing less species than substrates with other life forms. Conclusions: Tardigrades in Norwegian forest are extremely abundant, frequent and diverse. Moreover, it appears that that certain species and/or entire communities prefer specific microhabitats.