Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2023

Til dokument

Sammendrag

Climate change, urbanization, and many anthropogenic activities have intensified the floods in today’s world. However, poor attention was given to mitigation strategies for floods in the developing world due to funding and technical limitations. Developing flood inundation maps from historical flood records would be an important task in mitigating any future flood damages. Therefore, this study presents the predictive capability of the Rainfall-Runoff-Inundation (RRI) model, a 2D coupled hydrology-inundation model, and to build flood inundation maps utilizing available ground observation and satellite remote sensing data for Kalu River, Sri Lanka. Despite the lack of studies in predicting flood levels, Kalu River is an annually flooded river basin in Sri Lanka. The comparative results between ground-based rainfall (GBR) measurement and satellite rainfall products (SRPs) from the IMERG satellite have shown that SRPs underestimate peak discharges compared to GBR data. The accuracy and the reliability of the model were assessed using ground-measured discharges with a high coefficient of determination (R2 = 0.89) and Nash–Sutcliffe model efficiency coefficient (NSE = 0.86). Therefore, the developed RRI model can successfully be used to simulate the inundation of flood events in the KRB. The findings can directly be applied to the stakeholders.

Til dokument

Sammendrag

Population-genomic studies can shed new light on the effect of past demographic processes on contemporary population structure. We reassessed phylogeographical patterns of a classic model species of postglacial recolonisation, the brown bear (Ursus arctos), using a range-wide resequencing dataset of 128 nuclear genomes. In sharp contrast to the erratic geographical distribution of mtDNA and Y-chromosomal haplotypes, autosomal and X-chromosomal multi-locus datasets indicate that brown bear population structure is largely explained by recent population connectivity. Multispecies coalescent based analyses reveal cases where mtDNA haplotype sharing between distant populations, such as between Iberian and southern Scandinavian bears, likely results from incomplete lineage sorting, not from ancestral population structure (i.e., postglacial recolonisation). However, we also argue, using forward-in-time simulations, that gene flow and recombination can rapidly erase genomic evidence of former population structure (such as an ancestral population in Beringia), while this signal is retained by Y-chromosomal and mtDNA, albeit likely distorted. We further suggest that if gene flow is male-mediated, the information loss proceeds faster in autosomes than in X chromosomes. Our findings emphasise that contemporary autosomal genetic structure may reflect recent population dynamics rather than postglacial recolonisation routes, which could contribute to mtDNA and Y-chromosomal discordances.

Til dokument

Sammendrag

Apple stem grooving virus (ASGV) is one of the most widespread and asymptomatic main viruses, that restricts the production of apples worldwide. Establishment of rapid, simple, and effective early detection methods of apple virus is important. In this study, we established and optimized a one-step reverse transcription - recombinase polymerase amplification (RT-RPA) method, using the target-specific primers of ASGV coat protein gene sequence, and M-MLV reverse transcriptase. This method could be completed within 30 min at 40 °C, followed by a visual detection of the results within 5 min by using lateral flow dipstick (LFD). The specificity results showed that only samples infected with ASGV showed a test line, while no test line appeared in the ASGV-negative samples. In addition, when crude extract of leaves was used, the whole detection could be completed within 1 h, which was shortened by 4 to 6 times compared with the RT-PCR method. The detection made on more field samples showed that the RT-RPA-LFD method is of high stability and reliability for ASGV diagnosis, with a great potential in the rapid on-site detection of plant viruses.

Til dokument

Sammendrag

Animal welfare monitoring relies on sensor accuracy for detecting changes in animal well-being. We compared the distance calculations based on global positioning system (GPS) data alone or combined with motion data from triaxial accelerometers. The assessment involved static trackers placed outdoors or indoors vs. trackers mounted on cows grazing on pasture. Trackers communicated motion data at 1 min intervals and GPS positions at 15 min intervals for seven days. Daily distance walked was determined using the following: (1) raw GPS data (RawDist), (2) data with erroneous GPS locations removed (CorrectedDist), or (3) data with erroneous GPS locations removed, combined with the exclusion of GPS data associated with no motion reading (CorrectedDist_Act). Distances were analyzed via one-way ANOVA to compare the effects of tracker placement (Indoor, Outdoor, or Animal). No difference was detected between the tracker placement for RawDist. The computation of CorrectedDist differed between the tracker placements. However, due to the random error of GPS measurements, CorrectedDist for Indoor static trackers differed from zero. The walking distance calculated by CorrectedDist_Act differed between the tracker placements, with distances for static trackers not differing from zero. The fusion of GPS and accelerometer data better detected animal welfare implications related to immobility in grazing cattle.

Til dokument

Sammendrag

Seed is a critically important basic input of agriculture, because sowing healthy seeds is essential to food production. Using high quality seed enables less use of synthetic pesticides in the field. Seedborne pathogens can reduce yield quantity and quality of the crops produced. Seed treatments protect plant seedlings from pathogen attacks at emergence and at the early growth stages, contributing to healthy crop plants and good yield. However, there is increased concern about the application of synthetic pesticides to seeds, while alternatives are becoming increasingly addressed in seedborne pathogen research. A series of strategies based on synthetic fungicides, natural compounds, biocontrol agents (BCAs), and physical means has been developed to reduce seed contamination by pathogens. The volume of research on seed treatment has increased considerably in the past decade, along with the search for green technologies to control seedborne diseases. This review focuses on recent research results dealing with protocols that are effective in the management of seedborne pathogens. Moreover, the review illustrated an innovative system for routine seed health testing and need-based cereal seed treatment implemented in Norway.

Til dokument

Sammendrag

Emerging pollutants, corrosive chemicals and dyes released from the industries, harshly contaminates the landfills, environment and water reservoirs. Mass mortalities of aquatic animals in water bodies and species depletion is linked with improper release of wastewater. Pollutants released in water bodies are a threatening alarm to the human society and environment. To remove the pollutants from municipal wastewater, several techniques including adsorption, chelation, precipitation and ion exchange were employed. However, chitosan based hybrid materials (nanocomposite, hydrogel, membrane, film, sponge, nanoparticle, microsphere and flake) could serve as novel alternate materials to replace the chemical based adsorbents. The advantages of using chitosan based hybrid materials in wastewater treatment was summarized herein. Furthermore, this review aims to highlight the role of chitosan based hybrid materials for removing various pollutants and dyes from municipal wastewater.

Til dokument

Sammendrag

Grasslands are managed to provide multiple goods and services. During recent decades, abandonment of marginal grasslands and intensification of the most productive sites resulted in biodiversity losses and reduced ecosystem services (ESs). Moreover, invasion by unwanted plants impaired ESs, as seen in Jacobaea aquatica, a poisonous native invader in pre-alpine grasslands of Central Europe. Invasion by this plant compromises fodder quality and endangers animal health, resulting in abandonment of grassland use. We tested different management regimes to reduce J. aquatica in wet grasslands of Southern Germany and assessed how its regulation affects grassland multifunctionality. We monitored indicators associated with productivity and conservation, such as the abundance of J. aquatica, forage quality, yield, abundance of specialists, and pollinator-relevant plants. Intensive management favoured multifunctionality by promoting productivity and biodiversity, yet also increasing the abundance of J. aquatica. Reduced management regulates J. aquatica cover close to an acceptable threshold while also reducing ESs. Thus, we conclude that moderate management strikes a balance between the control of the poisonous plant and the supply of grassland multifunctionality.