Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2015

Sammendrag

Remediation of soil and groundwater has been attempted using various iron based nanoparticles during more than a decade, but the technology has not been adopted as widely as expected. This is partly due to ongoing work on optimization of the nanoparticles used, as well as their coatings, injection parameters and correct choice of particles according to the pollutants to be treated. Another aspect that has hampered large scale adoption or even testing is the lack of knowledge on possible negative effects of what is perceived a large scale spreading of reactive nanoparticles into the environment. This may potentially cause harm to humans and the environment, including organisms living in soil and neighboring streams, rivers and lakes. Two years ago, the EU project NanoRem (Taking Nanotechnological Remediation Processes from Lab Scale to End User Applications for the Restoration of a Clean Environment) started a considerable effort in valorizing nanoremediation, and as part of this testing the potential toxicity of particles used and developed during the project. After two years, seven different types of nanoparticles have been tested with a range of standardized and non-standardized tests adapted to nanotoxicological assessments, and results show that most particles are non-toxic at environmentally relevant concentrations (<100 mg/kg or mg/L). In some cases, however, iron nanoparticles have shown toxicity at far lower concentrations, and these effects have not been caused by competition for electron acceptors, as often observed when highly reductive chemicals are tested for biological effects. An overview of the tests used and results obtained will be presented. Also, our strategy for field testing and early results from polluted fields injected with different nanoparticles will be discussed to make some preliminary conclusions on the overall benefit of this technology in terms of environmental protection and risks.

Til dokument

Sammendrag

Før vi fant edelgran-seljerust på nordmannsedelgran (Abies nordmanniana) i et juletrefelt i 2006, var denne rustsoppen registrert på vanlig edelgran (Abies alba) og sibiredelgran (Abies sibirica) i Norge. Edelgran-seljerust er funnet i USA, Canada, mange land i Sør-Amerika og er utbredd i store deler av Europa, deriblant på nordmannsedelgran i Danmark.

Sammendrag

I desember 2006 ble soppen Herpotrichia parasitica (syn. Trichosphaeria parasitica) funnen på nordmannsedelgran (Abies nordmanniana) i et juletrefelt på ei øy i Rogaland. I april året etter ble det registrert store skader av den samme soppen på tyrkeredelgran (A. bornmuelleriana) hos en juletredyrker på fastlandet i Rogaland. Rundt 70 % av trærne var smittet. Noen trær hadde så sterke angrep at de måtte fjernes fra feltet. Soppen hadde til da ikke blitt funnet i juletrefelt, men den var ikke ny i landet. Soppen ble registrert på vanlig edelgran (A. alba) i Hordaland i 1974 (Robak 1976). I 2004 ble det funnet sterke angrep av soppen på vanlig edelgran i Njåskogen i Time kommune på Jæren). Fra Tyskland er det rapportert at soppen hovedsakelig angriper vanlig edelgran, men nordmannsedelgran, nobeledelgran (A. procera), veitchedelgran (A. veitchii) og granarter (Picea spp.) kan bli skadet når smittepresset er stort. I Danmark er soppen blant annet registrert på nobel- og nordmannsedelgran. De fleste innmeldte funn av H. parasitica i Nord-Amerika er ikke bekreftet.

Sammendrag

Edelgrannålesopp (Phaeocryptopus nudus) er funnet på korkedelgran (Abies lasiocarpa var. arizonica) og fjelledelgran (A. lasiocarpa) i Norge. I USA er soppen rapportert fra juletrær av nobeledelgran (A. procera) og kjempeedelgran (A. grandis).

Til dokument

Sammendrag

I Norge har vi registrert edelgranrust på nordmannsedelgran (Abies nordmanniana), nobeledelgran (A. procera), sibiredelgran (A. sibirica) og fjelledelgran (A. lasiocarpa), men som det tyske og engelske navnet tilsier, er soppen mest kjent fra vanlig edelgran (A. alba). Soppen er å finne på hele den nordlige halvkule så sant det vokser Abies spp. sammen med geitrams (Chamerion angustifolium) eller mjølke (Epilobium spp.).

Sammendrag

For vel 15 år siden ble det rapportert at edelgranskuddsjuke så langt var funnet på vanlig edelgran (Abies alba), gresk edelgran (A. cephalonica), fjelledelgran (A. lasiocarpa), korkedelgran (A. lasiocarpa var. arizonica), nordmannsedelgran (A. nordmanniana), spansk edelgran (A. pinsapo), nobeledelgran (A. procera) og sibiredelgran (A. sibirica) i Norge (Solheim 1999), men ikke på juletrær. Noen av disse funnene skriver seg langt tilbake i tid. I juletrefelt har vi så langt funnet angrep på sibiredelgran, nordmannsedelgran, fjelledelgran og tyrkeredelgran (A. bornmuelleriana). Edelgranskuddsjuke har vært mest problematisk på Nord-Vestlandet, men de siste årene har vi også sett sterke angrep på Østlandet. Vi har erfart er at fjelledelgran er spesielt utsatt. Edelgranskuddsjuke er også rapportert på fjelledelgran fra Nord-Amerika.

Til dokument

Sammendrag

At main commercial harvest four pallet sized boxes of apple (Malus ×domestica) cultivar ‘Aroma’ from one grower were assessed for maturity by using a portable spectrometer giving an IAD index (index of the absorption difference between 670 and 720 nm) indicating chlorophyll content. The apples were sorted into three groups; IAD index <0.65, 0.66 - 0.80 and >0.81. Apples of all groups were assessed for quality parameters at harvest and after storage in CA-bags at 2°C (about 100% RH) or natural atmosphere (NA) at 1°C (about 90% RH) for three months and after simulated shelf life at 20°C for 14 days. At the same times the apples were assessed for decay, both physiological disorders and fungal attacks. The CA-bags were gas-tight plastic bags for one pallet and were connected to an external gas control unit. The atmosphere inside the CA-bags consisted of 2% O2 and 2% CO2 during the cold period. At the start of the experiment apples from the different IAD index groups were not similar in subjectively judged ground colour and cover colour but similar in firmness and starch content. After three months of cold storage both apples stored at natural atmosphere and in CA-bags were still different in ground and cover colour and IAD index. In apples from CA-bags the titratable acidity content was higher in >0.81 group than on those with an IAD index <0.65. After 14 days at 20°C apples with IAD index >0.81 were different from <0.65 group in ground-colour and IAD index, but other parameters assessed were similar. After three months CA-bag stored apples had 2% visible decay but apples stored in NA had up to 27% decay. The apples with IAD index <0.65 had highest incidence of decay. After 14 days at 20°C apples with IAD index <0.65 stored in CA-bags had developed 5% decay while there was no decay in the other IAD index groups. Apples with IAD index <0.65 stored in NA had developed 45% decay after 14 days at 20°C while apples from the other groups had developed about 20% decay. Senescent decay and breakdown accounted for 90% of the physiological disorder while bitter rot was the major reason of fungal decay. CA-bags were found to be an efficient tool to prolong storage period and IAD index values might be useful in determining the potential storage life.