Publikasjoner
NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.
2025
Forfattere
Pia Heltoft ThomsenSammendrag
Lagring av løk deles inn i ulike lagringsfaser; tørking, nedkjøling og selve lagringsperioden med stabil temperatur på 0 °C. Ved langtidslagring er stabil temperatur viktig for å hindre vekttap, høy respirasjon, råte og groing. Tørkefasen er viktig del av lagringen og danner grunnlaget for god lagringskvalitet i løken. Lagringstekniske forhold og varighet av tørkefasen kan påvirke utviklingen av bakterieråte og gråskimmel på lager. Det anbefales temperaturer mellom 20 og 30 °C unde r tørking, med høyest temperatur i økologiske løk for å stoppe utvikling av gråskimmel. Med færre tilgjengelige plantevernmidler og tendenser til mer ustabilt klima om høsten kan lagerråter bli en større utfordring i årene som kommer. Ut fra egne forsøk presenteres det her anbefalinger i forhold til tørketemperaturer og relativ luftfuktighet for løk.
Sammendrag
Det er ikke registrert sammendrag
Sammendrag
Soil bulk density (BD) is a macroscopic indicator frequently used to infer the soils’ pore system, a fundamental attribute of terrestrial environments that significantly affects processes such as infiltration, water retention and plant root development. Additionally, BD is essential for assessing the storage of various materials in soils and sediments, including carbon and nutrients. High bulk density, often a consequence of soil compaction, represents a form of soil degradation that diminishes the soil’s functional capacity. Therefore, effective management of soil BD is crucial for improving agricultural yields, safeguarding ecosystem services, preventing degradation, and preserving the overall integrity of the Earth’s system. This review synthesizes recent research on the packing behavior of granular materials to clarify the emergent property of soil BD. The findings yield an empirical model that links packing fraction to the shape and size ratio of particles. The results demonstrate that the model accurately captures the frequently observed exponential decrease in soil BD with increasing soil organic matter (SOM) content. While it is widely recognized that particle density influences BD, the analysis indicates that grain shape exerts a considerable effect, followed by the particle size ratio in granular media. The insights from this study aim to transform the perception of BD from a static notion to one that acknowledges how changes in the morphology of soil constituents, driven by factors such as root growth and decomposition, can result in variations in BD. As a result, BD may become increasingly sensitive to feedback from climate and land use changes as the geometry of SOM evolves.
Forfattere
Asmita Murumkar Mahesh Tapas Jay Martin Margaret Kalcic Vinayak Shedekar Dustin Goering Andrea Thorstensen Chelsie Boles Todd Redder Remegio ConfesorSammendrag
Det er ikke registrert sammendrag
Sammendrag
Det er ikke registrert sammendrag
Sammendrag
Det er ikke registrert sammendrag
Sammendrag
Det er ikke registrert sammendrag
Forfattere
Ivan M. De-la-Cruz Femke Batsleer Dries Bonte Carolina Diller Timo Hytönen José Luis Izquierdo Sonia Osorio David Posé Aurora de la Rosa Martijn L. Vandegehuchte Anne Muola Johan A. StenbergSammendrag
Background and Aims Climate change is causing increasing temperatures and drought, creating new environmental conditions, which species must cope with. Plant species can respond to these shifting environments by escaping to more favourable environments, undergoing adaptive evolution or exhibiting phenotypic plasticity. In this study, we investigate genotype responses to variation in environmental conditions (genotype-by-environment interactions) over multiple years to gain insights into the plasticity and potential adaptive responses of plants to environmental changes in the face of climate change. Methods We transplanted 16 European genotypes of Fragaria vesca (Rosaceae), the woodland strawberry, reciprocally between four sites along a latitudinal gradient from 40°N (Spain) to 70°N (northern Finland). We examined genotype-by-environment interactions in plant performance traits (fruit and stolon production and rosette size) in ambient weather conditions and a reduced precipitation treatment (as a proxy for drought) at these sites over 2 years. Key Results Our findings reveal signals of local adaptation for fruit production at the latitudinal extremes of F. vesca distribution. No clear signals of local adaptation for stolon production were detected. Genotypes from higher European latitudes were generally smaller than genotypes from lower latitudes across almost all sites, years and both treatments, indicating a strong genetic control of plant size in these genotypes. We found mixed responses to reduced precipitation: several genotypes exhibited poorer performance under the reduced precipitation treatment across most sites and years, with the effect being most pronounced at the driest site, whereas other genotypes responded to reduced precipitation by increasing fruit and/or stolon production and/or growing larger across most sites and years, particularly at the wettest site. Conclusions This study provides insights into the influence of different environments on plant performance at a continental scale. Although woodland strawberry seems locally adapted in more extreme environments, reduced precipitation results in winners and losers among its genotypes. This might ultimately reduce genetic variation in the face of increasing drought frequency and severity, with implications for the capacity of the species to adapt.
Forfattere
Frank Thomas Ndjomatchoua Richard Olaf James Hamilton Stutt Ritter Atoundem Guimapi Luca Rossini Christopher A. GilliganSammendrag
Empirical field data and simulation models are often used separately to monitor and analyse the dynamics of insect pest populations over time. Greater insight may be achieved when field data are used directly to parametrize population dynamic models. In this paper, we use a differential evolution algorithm to integrate mechanistic physiological-based population models and monitoring data to estimate the population density and the physiological age of the first cohort at the start of the field monitoring. We introduce an ad hoc temperature-driven life-cycle model of Bemisia tabaci in conjunction with field monitoring data. The likely date of local whitefly invasion is estimated, with a subsequent improvement of the model’s predictive accuracy. The method allows computation of the likely date of the first field incursion by the pest and demonstrates that the initial physiological age somewhat neglected in prior studies can improve the accuracy of model simulations. Given the increasing availability of monitoring data and models describing terrestrial arthropods, the integration of monitoring data and simulation models to improve model prediction and pioneer invasion date estimate will lead to better decision-making in pest management.
Sammendrag
Det er ikke registrert sammendrag