Publikasjoner
NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.
2019
Sammendrag
Mediterranean climate areas are home to highly relevant and distinctive agro-ecosystems, where sustainability is threatened by water scarcity and continuous loss of soil organic carbon. In these systems, recycling strategies to close the loop between crop production (and agrorelated industries) and soil conservation are of special interest in the current context of climate change mitigation. Pyrolysis represents a recycling option for the production of energy and biochar, a carbonaceous product with a wide range of environmental and agronomic applications. Considering that biochar functionality depends on both the original biomass and the pyrolysis conditions, we produced and characterized 22 biochars in order to evaluate their potential to sequester C and modify soil physicochemical properties. The pore size distribution was a function of the original biomass and did not change with the temperature of pyrolysis. The highest number of pores within the size 0.2−30 μm, relevant for plant available water retention, was reached at 600 °C. However, ideal pyrolysis conditions to optimize C stability and hydrologic properties was reached at 400 °C in woody derived biochars, as higher temperatures lead to a nontransient hydrophobicity. This study highlights relevant physicochemical properties of locally derived biochars that can be used to tackle specific challenges in Mediterranean agroecosystems.
Forfattere
Hanne SickelSammendrag
Det er ikke registrert sammendrag
Forfattere
Arne BardalenSammendrag
Det er ikke registrert sammendrag
Forfattere
Michel Verheul Ivan Paponov Martina Paponov Dmitry Kechasov Jorunn Sofie Hansen Cecilia Stanghellini Muhammad Naseer Anne Kvitvær Kristoffer Hodnebrog Henk MaessenSammendrag
Det er ikke registrert sammendrag
Forfattere
Vibeke LindSammendrag
Det er ikke registrert sammendrag
Forfattere
Synnøve Smebye Botnen Marie Louise Davey Anders Aas Tor Carlsen Ella Thoen Einar Heegaard Unni Vik Philipp Dresch Sunil Mundra Ursula Peintner Andy F. S. Taylor Håvard KauserudSammendrag
Aim Polar and alpine ecosystems appear to be particularly sensitive to increasing temperatures and the altered precipitation patterns linked to climate change. However, little is currently known about how these environmental drivers may affect edaphic organisms within these ecosystems. In this study, we examined communities of plant root‐associated fungi (RAF) over large biogeographical scales and along climatic gradients in the North Atlantic region in order to gain insights into the potential effects of climate variability on these communities. We also investigated whether selected fungal traits were associated with particular climates. Locations Austria, Scotland, Mainland Norway, Iceland, Jan Mayen and Svalbard. Taxa Root fungi associated with the ectomycorrhizal and herbaceous plant Bistorta vivipara. Methods DNA metabarcoding of the ITS1 region was used to characterize the RAF of 302 whole plant root systems, which were analysed by means of ordination methods and linear modelling. Fungal spore length, width, volume and shape, as well as mycelial exploration type (ET) of ectomycorrhizal (ECM) basidiomycetes were summarized at a community level. Results The RAF communities exhibited strong biogeographical structuring, and both compositional variation as well as fungal species richness correlated with annual temperature and precipitation. In accordance with general island biogeography theory, the least species‐rich RAF communities were found on Jan Mayen, a remote and small island in the North Atlantic Ocean. Fungal spores tended to be more elongated with increasing latitude. We also observed a climate effect on which mycelial ET was dominating among the ectomycorrhizal fungi. Main conclusions Both geographical and environmental variables were important for shaping root‐associated fungal communities at a North Atlantic scale, including the High Arctic. Fungal OTU richness followed general biogeographical patterns and decreased with decreasing size and/or increasing isolation of the host plant population. The probability of possessing more elongated spores increases with latitude, which may be explained by a selection for greater dispersal capacity among more isolated host plant populations in the Arctic.
Forfattere
Erik J. JonerSammendrag
Det er ikke registrert sammendrag
Forfattere
Erik J. JonerSammendrag
Det er ikke registrert sammendrag
Forfattere
Daniel RasseSammendrag
Det er ikke registrert sammendrag
Sammendrag
Det er ikke registrert sammendrag