Publikasjoner
NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.
2023
Sammendrag
This chapter describes the work performed within the Sinograin II project on implementation of new precision nitrogen management technologies in three regions of North China. Each of the analyzed regions represents a different crop and scale of a farming system: large-scale rice farming system in Heilongjiang province, medium-scale maize farming system in Jilin province, and small-scale wheat farming system in the North China Plain. A village was selected in each region to represent the agricultural practices and current nutrient and crop management strategies of the tested region. Moreover, the initial regional optimum crop management, the current agricultural extension, as well as the precision nitrogen technologies implemented in the respective regions are described. During the course of the project, a number of novel tools and strategies for precision nitrogen management were developed for the respective regions and published in scientific papers. This chapter reviews and discusses the selected findings and indicates directions of the upcoming research.
Sammendrag
Soil management is important for sustainable agriculture, playing a vital role in food production and maintaining ecological functions in the agroecosystem. Effective soil management depends on highly accurate soil property estimation. Machine learning (ML) is an effective tool for data mining, selection of key soil properties, modeling the non-linear relationship between different soil properties. Through coupling with spectral imaging, ML algorithms have been extensively used to estimate physical, chemical, and biological properties quickly and accurately for more effective soil management. Most of the soil properties are estimated by either near infrared (NIR), Vis-NIR, or mid-infrared (MIR) in combination with different ML algorithms. Spectroscopy is widely used in estimation of chemical properties of soil samples. Spectral imaging from both UAV and satellite platforms should be taken to improve the spatial resolution of different soil properties. Spectral image super-resolution should be taken to generate spectral images in high spatial, spectral, and temporal resolutions; more advanced algorithms, especially deep learning (DL) should be taken for soil properties’ estimation based on the generated ‘super’ images. Using hyperspectral modeling, soil water content, soil organic matter, total N, total K, total P, clay and sand were found to be successfully predicted. Generally, MIR produced better predictions than Vis-NIR, but Vis-NIR outperformed MIR for a number of properties. An advantage of Vis-NIR is instrument portability although a new range of MIR portable devices is becoming available. In-field predictions for water, total organic C, extractable phosphorus, and total N appear similar to laboratory methods, but there are issues regarding, for example, sample heterogeneity, moisture content, and surface roughness. More precise and detailed soil property estimation will facilitate future soil management.
Forfattere
Xiande Li Zhilu Sun Giovanna Ottaviani Aalmo Fangfang Cao Divina Gracia P. Rodriguez Chen Qian Yongxun Zhang Knut ØistadSammendrag
Agricultural extension services are integral to technology adoption where they play a key role in delivering relevant agricultural information and technologies to farmers. In China, agricultural extension services are provided through experimentation, demonstration, training, and consulting. In Norway, agricultural extension is focused on collecting, developing, and coordinating agricultural knowledge to farmers. This chapter focuses on why agricultural extension is needed, how it is developed, and what services agricultural extension provides to its clients. It discusses experiences from China and Norway where agricultural extension has led to or is necessary for boosting agricultural productivity, increasing food security and safety, and improving the well-being of farmers.
Sammendrag
Up-to-date and reliable information on land cover and land use status is important in many aspects of human activities. Knowledge about the reference dataset, its coverage, nomenclature, thematic and geometric accuracy, spatial resolution is crucial for appropriate selection of reference samples used in the classification process. In this study, we examined the impact of the selection and pre-processing of reference samples for the classification accuracy. The classification based on Random Forest algorithm was performed using firstly the automatically selected reference samples derived directly from the national databases, and secondly using the pre-processed and verified reference samples. The verification procedures involved the iterative analysis of histogram of spectral features derived from the Sentinel-2 data for individual land cover classes. The verification of the reference samples improved the accuracy of delineation of all land cover classes. The highest improvement was achieved for the woodland broadleaved and non- and sparce vegetation classes, with the overall accuracy increasing from 51% to 73%, and from 33% to 74%, respectively. The second objective of this study was to derive the best possible land cover classification over the mountain area in Norway, therefore we examined whether the use of the Digital Elevation Model (DEM) can improve the classification results. Classifications were carried out based on Sentinel-2 data and a combination of Sentinel-2 and DEM. Using the DEM the accuracy for nine out of ten land cover classes was improved. The highest improvement was achieved for classes located at higher altitudes: low vegetation and non- and sparse vegetation.
Forfattere
Robert Lewis Kjell-Erik Havåg Marstein John Arvid GrytnesSammendrag
Det er ikke registrert sammendrag
Forfattere
Atle Mysterud Erling Johan Solberg Erling Meisingset Manuela Panzacchi Geir Rune Rauset Olav Strand Bram Van Moorter Christer Moe Rolandsen Inger Maren RivrudSammendrag
Det er ikke registrert sammendrag
Forfattere
Marianne Stenrød Kathinka Lang Marit Almvik Roger Holten Agnethe Christiansen Xingang Liu Qiu JingSammendrag
To ensure compliance with food safety regulations, monitoring programs and reliable analytical methods to detect relevant chemical pollutants in food and the environment are key instruments. Pesticides are an important part of pest management in agriculture to sustain and increase crop yields and control post-harvest decay, while pesticide residues in food may pose a risk to human health. Thus, the levels of pesticide residues in food must be controlled and should align with Maximum Residue Levels regulations to ensure food safety. Food safety monitoring programs and analytical methods for pesticide residues and metabolites are well developed. Future developments to ensure food safety must include the increased awareness and improved regulatory framework to meet the challenges with natural toxins, emerging contaminants, novel biopesticides, and antimicrobial resistance in food and the environment. The reality of a complex mixture of pollutants, natural toxins, and their metabolites potentially occurring in food and the environment implies the necessity to consider combined effects of chemicals in risk assessment. Here, we present challenges, monitoring efforts, and future perspectives for chemical food safety focused on the importance of current developments in high-resolution mass spectrometry (HRMS) technologies to meet the needs in food safety and environmental monitoring.
Forfattere
Arne Verstraeten Nicolas Bruffaerts Fabiana Cristofolini Elena Vanguelova Johan Neirynck Gerrit Genouw Bruno De Vos Peter Waldner Anne Thimonier Anita Nussbaumer Mathias Neumann Sue Benham Pasi Rautio Liisa Ukonmaanaho Päivi Merilä Antti-Jussi Lindroos Annika Saarto Jukka Reiniharju Nicholas Clarke Volkmar Timmermann Manuel Nicolas Maria Schmitt Katrin Meusburger Anna Kowalska Idalia Kasprzyk Katarzyna Kluska Łukasz Grewling Małgorzata Malkiewicz Lars Vesterdal Morten Ingerslev Miklós Manninger Donat Magyar Hugues Titeux Gunilla Pihl Karlsson Regula Gehrig Sandy Adriaenssens Agneta Ekebom Åslög Dahl Marco Ferretti Elena GottardiniSammendrag
Det er ikke registrert sammendrag
Sammendrag
NIBIO, NORSUS og Norwaste har vært involvert i et forskningsprosjekt finansiert av Handelens Miljøfond, som har tatt for seg bionedbrytbar plast og innsamlingsløsninger for matavfall i Norge. Forskerne fant at bionedbrytbar plast i svært liten grad brytes ned i biogassprosessen. Prosjektet pågikk fra juni 2022, sluttrapporten ble levert i august i år. NIBIO valgte de to mest brukte bionedbrytbare plastposene i Norge, og kjørte laboratorieforsøk der man så på nedbrytningen av disse under anaerob utråtning (biogassprosessen). Det ble først gjort forbehandling med termisk hydrolyse, og siden forsøk under såkalt termofile og mesofile forhold, altså med varmebehandling. – Vi hadde en ganske lang oppholdstid på 22 dager. Det store spørsmålet var om disse posene brytes ned under slike forhold. Det korte svaret er at det skjer i svært liten grad, sier NIBIO-forsker Claire Coutris til Biogassbransjen.no. Posene merket «hjemmekomposterbare» tapte maksimalt 33 prosent av opprinnelig vekt under termofile forhold, 55 grader. De som var markert «komposterbare i industriell kompostering» hadde et vekttap på 14-21 prosent. – Posene er nedbrytbare, men ikke under anaerob utråtning, sier Coutris. – Ved kompostering ved cirka 60 grader skal de bli borte i løpet av 6 måneder. Komposteringsprosesser foregår over mye lenger tid enn prosesser i biogassanlegg. Det var 4 prosent plast i matavfallet, som tilsvarer det man finner i faktisk produksjon, forteller Coutris. – Sannsynligvis vil det være behov for etterbehandling av biorest selv når matavfallet samles inn i bionedbrytbare poser. – Men vil det være noe problem å kjøre bioresten på jordet med bionedbrytbar plast, hvis den uansett brytes ned på sikt? – Disse posene er nedbrytbare under spesifikke forhold. Industriell kompost holder minst 60 grader i minst 4 uker. Jord holder sjelden mer enn 20 grader, og vi kan dermed ikke forvente at plasten brytes ned fort nok til at den ikke vil akkumuleres i jord. Coutris ser for seg videre forsøk hvor man kan bruke plastbitene fra forsøker i landbruksjord for å se hvor raskt de brytes ned under slike forhold.
Sammendrag
Seed is a critically important basic input of agriculture, because sowing healthy seeds is essential to food production. Using high quality seed enables less use of synthetic pesticides in the field. Seedborne pathogens can reduce yield quantity and quality of the crops produced. Seed treatments protect plant seedlings from pathogen attacks at emergence and at the early growth stages, contributing to healthy crop plants and good yield. However, there is increased concern about the application of synthetic pesticides to seeds, while alternatives are becoming increasingly addressed in seedborne pathogen research. A series of strategies based on synthetic fungicides, natural compounds, biocontrol agents (BCAs), and physical means has been developed to reduce seed contamination by pathogens. The volume of research on seed treatment has increased considerably in the past decade, along with the search for green technologies to control seedborne diseases. This review focuses on recent research results dealing with protocols that are effective in the management of seedborne pathogens. Moreover, the review illustrated an innovative system for routine seed health testing and need-based cereal seed treatment implemented in Norway.