Publikasjoner
NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.
2020
Forfattere
Kjetil Hindar Lars Robert Hole Kyrre Linné Kausrud Martin Malmstrøm Espen Rimstad Lucy Robertson Odd Terje Sandlund Eva Bonsak Thorstad Knut Vollset Hugo de Boer Katrine Eldegard Johanna Järnegren Lawrence Richard Kirkendall Inger Elisabeth Måren Erlend Birkeland Nilsen Eli Knispel Rueness Anders Nielsen Gaute VelleSammendrag
Key words: VKM, risk assessment, Norwegian Scientific Committee for Food and Environment, Norwegian Environment Agency, Norwegian Food Safety Authority Introduction: The Norwegian Environment Agency and the Norwegian Food Safety Authority asked the Norwegian Scientific Committee for Food and Environment to assess the risk to Norwegian biodiversity, to the productivity of native salmonid populations, and to aquaculture, from the spread and establishment of pink salmon in Norwegian rivers, and to assess mitigation measures to prevent the spread and establishment of this alien species. Pink salmon is native to rivers around the northern Pacific Ocean. The species usually has a strict two-year life cycle, with populations spawning in even and odd years being genetically isolated. Fertilized eggs of pink salmon were transferred from Sakhalin Island to Northwest Russia in the late 1950s, and fry were released in rivers draining to the White Sea. The first abundant return to rivers in Northwest Russia, as well as to Norway and other countries in northwestern Europe, was recorded in 1960. Stocking with fish from Sakhalin was terminated in 1979. By then, no self-sustaining populations had been established. From 1985 onwards, stocking in White Sea rivers was resumed with fish from rivers in the more northerly Magadan oblast on the Russian Pacific, resulting in the establishment of reproducing populations. Stocking was continued until 1999, when the last batch of evenyear fertilized eggs was imported, and the fry released in spring 2000. Thus, all pink salmon caught after 2001 in the Northeast Atlantic and the Atlantic side of the Arctic Ocean including the Barents Sea, as well as in rivers draining into these seas, are the result of reproduction in the wild. Pink salmon is now established with abundant and increasing stocks in Northwest Russia and regular occurrence in rivers in eastern Finnmark. Catches of odd-year adult pink salmon in Northwest Russia were usually below 100 tonnes before 2001 and increased to an annual average of 220.5 tonnes during the period 2001-2017. Even-year returns are smaller than odd-year returns both in Northwest Russia and in Norway. The number of pink salmon recorded in Norwegian rivers peaked in 2017, with a high number of fish in eastern Finnmark, and substantial numbers recorded in rivers all along the coast of Norway and in other European countries. In 2019, the area with abundant returns expanded in comparison with 2017, to include rivers in western Finnmark and Troms. The recorded numbers were perhaps lower in southern Norway in 2017 than in 2019 (full statistics not available when this report was finalised), but also in southern Norway there were more pink salmon in 2019 than in any year before 2017. The large numbers of pink salmon in western Finnmark and Troms in 2019 may indicate an expansion of the area in Norway with abundant odd-year pink salmon returns. In some small rivers in eastern Finnmark, between 1000 and 1500 pink salmon were fished out by local people in 2019, demonstrating the magnitude of the potential impact in terms of numbers of pink salmon. We cannot rule out that this will not happen over larger parts of Norway in the coming years. The even-year strain of pink salmon only occurs in low numbers in Russian rivers, as well as Norwegian, rivers. Adult pink salmon enter the rivers from early July, and spawning occurs in AugustSeptember. Spawning habitat requirements are like those of native salmonids: Atlantic salmon, brown trout, and Arctic charr. Spawning of pink salmon occurs earlier than the native salmonids, but observations in 2019 indicate a possible overlap with native salmonids in September in northern Norway. . Pink salmon eggs hatch in late winter or spring, and the alevins remain in the gravel until most of the yolk sac has been resorbed. Emerging fry are approximately 30 mm in length. ...................
Sammendrag
In the EU 2020 biodiversity strategy, maintaining and enhancing forest biodiversity is essential. Forest managers and technicians should include biodiversity monitoring as support for sustainible forest management and conservation issues, through the adoption of forest biodiversity indices. The present study investigates the potential of a new type of Structure from Motion (SfM) photogrammetry derived variables for modelling forest structure indicies, which do not require the availability of a digital terrain model (DTM) such as those obtainable from Airborne Laser Scanning (ALS) surveys. The DTM-independent variables were calculated using raw 3D UAV photogrammetric data for modeling eight forest structure indices which are commonly used for forest biodiversity monitoring, namely: basal area (G); quadratic mean diameter (DBHmean); the standard deviation of Diameter at Breast Height (DBHσ); DBH Gini coefficient (Gini); the standard deviation of tree heights (Hσ); dominant tree height (Hdom); Lorey’s height (Hl); and growing stock volume (V). The study included two mixed temperate forestsareas withadifferenttype ofmanagement, with onearea, left unmanagedfor thepast 50years while the other being actively managed. A total of 30 fieldsample plots were measured in the unmanaged forest, and 50 field plots were measured in the actively managed forest. The accuracy of UAV DTM-independent predictions was compared with a benchmark approach based on traditional explanatory variables calculated from ALS data. Finally, DTM-independent variables were used to produce wall-to-wall maps of the forest structure indices in the two test areas and to estimate the mean value and its uncertainty according to a model-assisted regression estimators. DTM-independent variables led to similar predictive accuracy in terms of root mean square error compared to ALS in both study areas for the eight structure indices (DTM-independent average RMSE% = 20.5 and ALS average RMSE% = 19.8). Moreover, we found that the model-assisted estimation, with both DTM-independet and ALS, obtained lower standar errors (SE) compared to the one obtained by modelbased estimation using only field plots. Relative efficiency coefficient (RE) revealed that ALS-based estimates were, on average, more efficient (average RE ALS = 3.7) than DTM-independent, (average RE DTM-independent = 3.3). However, the RE for the DTM-independent models was consistently larger than the one from theALSmodelsfortheDBH-relatedvariables(i.e.G,DBHmean,andDBHσ)andforV.Thishighlightsthepotential of DTM-independent variables, which not only can be used virtually on any forests (i.e., no need of a DTM), but also can produce as precise estimates as those from ALS data for key forest structural variables and substantially improve the efficiency of forest inventories.
Forfattere
Min-Rui Wang Zhibo Hamborg Rune Slimestad Abdelhameed Elameen Dag-Ragnar Blystad Sissel Haugslien Gry Skjeseth Qiao‑Chun WangSammendrag
Shallot (Allium cepa var. aggregatum), a small bulb onion, is widely grown in the world. We previously reported a droplet-vitrification for cryopreservation of in vitro-grown shoot tips of shallot genotype ‘10603’. The present study further evaluated rooting, vegetative growth, bulb production and contents of biochemical compounds, as well as genetic stability in cryo-derived plants. The results showed no significant differences in rooting, vegetative growth, bulb production and contents of soluble sugars and flavonols between the cryo- and in vitro-derived plants. Analyses of ISSR and AFLP markers did not detect any polymorphic bands in the cryo-derived plants. These results indicate rooting and vegetative growth ability, biochemical compounds and genetic stability were maintained in cryo-derived plants. The present study provides experimental evidences that support the use of cryopreservation method for long-term preservation of genetic resources of shallots and other Allium species.
Forfattere
Gunda Thöming Sándor Koczor Ferenc Szentkirályi Hans Ragnar Norli Marco Tasin Geir Kjølberg KnudsenSammendrag
In a field-trapping experiment with plant volatiles, we observed notably high attraction of green lacewing (Chrysotropia ciliata) males to the compound p-anisaldehyde. Based on this finding, we initiated the present study to elucidate this phenomenon and to investigate the chemical ecology of C. ciliata. Scanning electron microscopy revealed elliptical glands abundantly distributed on the 2nd to 6th abdominal sternites of C. ciliata males, whereas females of the species completely lacked such glands. No p-anisaldehyde was found in extractions of body parts of C. ciliata. Methyl p-anisate and p-methoxybenzoic acid were identified exclusively in the extract from abdominal segments 2–8 of males. Field-trapping experiments revealed no attraction of C. ciliata to either methyl p-anisate or p-methoxybenzoic acid. In contrast, males showed marked attraction to p-anisaldehyde in the field and antennae showed strong responses to this compound. Headspace collections in the field from living insects in their natural environment and during their main daily activity period indicated that p-anisaldehyde was emitted exclusively by C. ciliata males. Our overall results suggest that p-anisaldehyde might serve as a male-produced pheromone that attracts conspecific C. ciliata males. Here, we discuss hypotheses regarding possible mechanisms involved in regulation of p-anisaldehyde production, including involvement of the compounds methyl p-anisate and p-methoxybenzoic acid, and the potential ecological function of p-anisaldehyde in C. ciliata.
Sammendrag
Det er ikke registrert sammendrag
Forfattere
Elisabet Martínez-Sancho Lenka Slámová Sandro Morganti Claudio Grefen Barbara Carvalho Benjamin Dauphin Christian Rellstab Felix Gugerli Lars Opgenoorth Katrin Heer Florian Knutzen Georg von Arx Fernando Valladares Stephen Cavers Bruno Fady Ricardo Alía Filippos Aravanopoulos Camilla Avanzi Francesca Bagnoli Evangelos Barbas Catherine Bastien Raquel Benavides Frédéric Bernier Guillaume Bodineau Cristina C. Bastias Jean-Paul Charpentier José M. Climent Marianne Corréard Florence Courdier Darius Danusevicius Anna-Maria Farsakoglou José M. García del Barrio Olivier Gilg Santiago C. González-Martínez Alan Gray Christoph Hartleitner Agathe Hurel Arnaud Jouineau Katri Kärkkäinen Sonja T. Kujala Mariaceleste Labriola Martin Lascoux Marlène Lefebvre Vincent Lejeune Grégoire Le-Provost Mirko Liesebach Ermioni Malliarou Nicolas Mariotte Silvia Matesanz Célia Michotey Pascal Milesi Tor Myking Eduardo Notivol Birte Pakull Andrea Piotti Christophe Plomion Mehdi Pringarbe Tanja Pyhäjärvi Annie Raffin José A. Ramírez-Valiente Kurt Ramskogler Juan J. Robledo-Arnuncio Outi Savolainen Silvio Schueler Vladimir Semerikov Ilaria Spanu Jean Thévenet Mari Mette Tollefsrud Norbert Turion Dominique Veisse Giovanni Giuseppe Vendramin Marc Villar Johan Westin Patrick FontiSammendrag
Det er ikke registrert sammendrag
Sammendrag
The EU has developed a Directive on Sustainable Use of Chemical Pesticides (2009/128/EC) (SUD) that aims to enhance the use of non-chemical alternatives to pesticides like microbial plant protection products (PPP). The number of authorized microbial PPP for plant protection has increased globally during the last decade. There is, however, variation between different countries. Sweden and Denmark have for example each authorized 20 microbial PPP while Norway has only authorized four microbial PPP. Norway has also received significantly fewer applications for authorization of microbial PPP than the other Scandinavian countries. We explore possible explanations for the observed differences. Our results show that that the regulations in the three countries had similar requirements for the authorisation of microbial PPP. The size of the market is somewhat smaller in Norway than in Sweden and Denmark, and could therefore explain some of the differences. We suggest, however, that the most important explanation is implementation differences in terms of different decisions made in the authorization process. By comparing the authorization process for three microbial PPP in the Scandinavian countries, we found that Norway used more time for the product authorization decisions. Norway assess the same types of microbial PPP more restrictively with respect to environmental aspects and especially human health risks.
Sammendrag
Det er ikke registrert sammendrag
Forfattere
Roland Gerhards Michael Späth Markus Sökefeld Gerassimos G. Peteinatos Adnan Nabout Victor Rueda-AyalaSammendrag
Precision farming technologies were implemented into a commercial harrow to increase selectivity of weed harrowing in spring cereals. Digital cameras were mounted before and after the harrow measuring crop cover. Crop soil cover (CSC) was computed out of these two images. Eight field experiments were carried out in spring cereals. Mode of harrowing intensity was changed in four experiments by speed, number of passes and tine angle. Each mode was varied in five intensities. In four experiments, only intensity of harrowing was changed. Weed control efficacy (WCE) and CSC were measured immediately after harrowing. Crop recovery was assessed 14 days after harrowing. Modes of intensity were not significantly different. However, intensity had significant effects on WCE and CSC. Cereals recovered from 10% CSC, and selectivity was in the constant range at 10% CSC. Therefore, 10% CSC was the threshold for the decision algorithm. If the actual CSC was below 10% CSC, intensity was increased. If the actual CSC was higher than 10%, intensity was decreased. Image analysis, decision support system and automatic control of harrowing intensity by hydraulic adjustment of tine angle were installed on a controller mounted on the harrow. The new system was tested in an additional field study. Threshold values for CSC were set at 10%, 30% and 60%. Automatic tine angle adjustment precisely realised the three different CSC values with variations of 1.5% to 3%. This development contributes to selective weed control and supports farmers during harrowing.
Forfattere
Einar StrandSammendrag
Det er ikke registrert sammendrag