Publikasjoner
NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.
2024
Sammendrag
Aims To develop a methodology to study uptake and redistribution by plants of NH4+ from deep soil, applying it to investigate deep root N uptake by cultivated grassland species. Methods A slow-release 15NH4+ label adsorbed to clinoptilolite was placed into soil (depth 42 cm) well below the densest root zone in well-established monospecific stands of five grass and two clover species. Species showing a variety of deep rooting patterns, N acquisition strategy, forage qualities, and persistence in hemiboreal conditions were chosen. The label was placed in early spring and tracked throughout one or two growing seasons in two repeated experiments. Results After two growing seasons ~ 90% of the label was tracked in the soil and harvested herbage of grasses, less in clovers. Deep N uptake was limited in spring, increased during mid-season, and was strongest in autumn in all species, despite lower herbage yield in autumn. Species differed in ability to recover and maintain 15N in the soil–plant system. In one growing season, Lolium perenne L., Phleum pratense L., Schedonorus pratensis (Huds.) P.Beauv. and Schedonorus arundinaceus (Schreb.) Dumort herbage recovered ~ 65% of the label, Poa pratensis L. 54%, and Trifolium pratense L. and Trifolium repens L. 36–48%. Label transport to topsoil was observed, mainly attributable to plant nutrient redistribution rather than physical diffusion. Conclusions The innovative slow-release 15N label enabled tracing species differences and seasonal changes in uptake of NH4+ from deep soil. Among the tall-growing grasses, growth vigor appeared as important for deep N uptake as expected root depth.
Sammendrag
Det er ikke registrert sammendrag
Sammendrag
Heat treatment increases the decay resistance of wood by decreasing its hygroscopicity, but the wood material remains degradable by fungi. This study investigated the degradation of heat-treated wood by brown rot fungi, with the aim of identifying fungal-induced hygroscopicity changes that facilitate degradation. Scots pine sapwood samples were modified under superheated steam at 200 and 230 °C and then exposed to Coniophora puteana and Rhodonia placenta in a stacked-sample decay test to produce samples in different stages of decay. Sorption isotherms were measured starting in desorption from the undried, decaying state to investigate their hygroscopic properties. Although there were substantial differences in degradative ability between the two fungi, the results revealed that decay by both species increased the hygroscopicity of wood in the decaying state, particularly at high relative humidity. The effect was stronger in the heat-treated samples, which showed a steep increase in moisture content at low decay mass losses. The reference samples showed decreased hygroscopicity in absorption from the dry state, while the heat-treated samples still showed an increase at low mass losses. Near infrared spectroscopy showed that the early stages of decay were characterised by the degradation of hemicellulose and chemical changes to cellulose and lignin, which may explain the increase in hygroscopicity. The results provide a new perspective on brown rot decay and offer insight into the degradation of heat-treated wood.
Sammendrag
Det er ikke registrert sammendrag
Sammendrag
Det er ikke registrert sammendrag
Forfattere
Trygve S. Aamlid Trond Gunnarstorp Geir Kjølberg Knudsen Paula Izabella Lawicka Hogne Prestegård Tonje VitsøSammendrag
Det er ikke registrert sammendrag
Forfattere
Paul Eric Aspholm Simo Maduna Juho Vuolteenaho Cornelya Klutsch Hallvard Jensen Ida Marie Luna Fløystad Ingrid Helle Søvik Ane-Sofie Bednarczyk Hansen Runar Kjær David Kniha Helen Jewell Josefine Bergs Snorre HagenSammendrag
Det er ikke registrert sammendrag
Forfattere
Sigridur DalmannsdottirSammendrag
Det er ikke registrert sammendrag
Sammendrag
Det er ikke registrert sammendrag
Sammendrag
Det er ikke registrert sammendrag