Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2020

Sammendrag

BACKGROUND Low growth temperatures and the special light qualities of midnight sun in northern Scandinavia, have both been shown to improve eating quality of swede root bulbs. To study the combined effect of these factors on root development and sensory‐related compounds, plants were grown in phytotron under different 24 h supplemental light‐emitting diode (LED) light colours, at constant 15 °C, or reduced end‐of‐season temperature at 9 °C. RESULTS Far‐red LED (740 nm) light induced longer leaves and produced more roundly shaped bulbs, than the other light quality treatments. At constant 15 °C, supplemental light of far‐red LED also produced a stronger purple crown skin colour than the other LED treatments. This difference between light quality treatments disappeared at 9 °C, as all bulb crowns developed a purple colour. There were no significant effects of LED‐supplements on sugar concentrations, while the reduced temperature on average did increase concentrations of d‐fructose and d‐glucose. Total glucosinolate concentrations were not different among treatments, although the most abundant glucosinolate, progoitrin, on average was present in highest concentration under LEDs containing far‐red light, and in lower concentration at 9 °C compared to 15 °C. CONCLUSION The light quality of 24 h photoperiods in combination with temperature appears primarily important for growth and morphological traits in swede root bulbs. Influence of light quality and low temperature on appearance and sensory‐related compounds may be utilized in marketing of root vegetables with special quality related to growth conditions of high latitude origin. © 2020 Society of Chemical Industry

Til dokument

Sammendrag

ANDERcontrol with the predatory mite Amblyseius andersoni as the active organism is sought to be used as a biological control agent in Norway. ANDERcontrol is intended for use against different mites (such as the two-spotted, fruit-tree, and red spider mite, russet mite,cyclamen mite) and in horticultural crops such as fruits, berries, vegetables, and ornamental. VKM’s conclusions are as follows Prevalence, especially if the organism is found naturally in Norway: Amblyseius andersoni has not been observed in Norway. It has been observed, in low numbers, in southern Sweden and has the capability to enter diapause under unfavourable conditions which suggests the potential for establishing under Norwegian conditions. It is however, the view of VKM that it likely lacks the ability to survive and establish in areas with cold winters and chilly summers, as found in most parts of Norway under current climatic conditions. The potential of the organism for establishment and spread under Norwegian conditions specified for use in greenhouses and open field: The thermal preference of A. andersoni restricts its establishment, and the species has not been observed in Norway. The species is capable of entering diapause, but the lack of records, despite targeted surveys, makes it the opinion of VKM that it is unlikely that A. andersoni will be able to establish in outdoor areas in Norway. However, the lack of information on temperature tolerance of the species constitute an uncertainty factor. The risk of spread from greenhouses is low because no wind or vector are likely to carry the mites from the greenhouse to suitable outdoor habitats, and mite populations in greenhouses do not enter the more cold-tolerant diapause. All conclusions are uncertain due to lack of relevant information regarding the species’ climate tolerance. Any ambiguities regarding the taxonomy, which hampers risk assessment: There are no taxonomic challenges related to the assessment of A. andersoni. Assessment of the product and the organism with regard to possible health risk: VKM is unaware of reports where harm to humans by A. andersoni itself, or associated pathogenic organisms have been observed. Mites may however produce allergic reactions in sensitive individuals handling plant material with high numbers of individuals. There is reason to believe that this holds true also for A. andersoni. Key words: VKM, risk assessment, Norwegian Scientific Committee for Food and Environment, Norwegian Food Safety Authority, biological control, predatory mite

Til dokument

Sammendrag

The product Limonica, with the predatory mite Amblydromalus limonicus as the active organism, is sought to be used as a biological control agent in Norway. Limonica is intended for use against western flower thrips (Frankliniella occidentallis), other thrips (e.g. Thrips tabaci), spider mites and whiteflies (e.g. Trialeurodes, Aleyrodes and Bemisia spp.) in protected horticultural crops such as cucumber, sweet pepper, strawberry and ornamentals. The product is not recommended for greenhouse-grown tomatoes. VKM’s conclusions are as follows Distribution, especially if the organism is found naturally in Norway Amblydromalus limonicus has a very wide natural distribution, being reported from New Zealand, Australia South America, Central America, and North America as well as Hawaii. It has also recently established populations in crop productions and non-crop vegetation in Catalonia, North Eastern Spain. Amblydromalus limonicus have not been observed in Norway. The species seems not to have the capability to enter diapause under unfavourable conditions and it is the view of VKM that it likely lacks the ability to survive and establish in areas with cold winters and chilly summers, as found in most parts of Norway under current climatic conditions. The potential of the organism for establishment and spread under Norwegian conditions specified for use in greenhouses and open field The thermal preference of A. limonicus restricts its establishment, and the species has not been observed outdoors in Norway. As the species is incapable of entering diapause it is the opinion of VKM that it is unlikely that A. limonicus will be able to establish in outdoor areas in Norway. However, the lack of detailed information on temperature tolerance of the species constitutes an uncertainty factor. The risk of spread from greenhouses is low because no wind or vector are likely to carry the mites from the greenhouse to suitable outdoor habitats. However, mites that have escaped from a greenhouses to may spread in the nature. All conclusions are uncertain due to lack of relevant information regarding the species’ climate tolerance. Its origin and current distribution suggest that it cannot survive cold winters. Any ambiguities regarding taxonomy that hamper risk assessment There are no taxonomic challenges related to the assessment of A. limonicus. Assessment of the product and the organism with regard to possible health risks VKM Report 2020: 13 8 VKM is unaware of reports where harm to humans has been observed, whether by A. limonicus itself. Mites may, however, produce allergic reactions in sensitive individuals handling plant material with high numbers of individuals. There is reason to believe that this holds true also for A. limonicus. Key words: VKM, risk assessment, Norwegian Scientific Committee for Food and Environment, Norwegian Food Safety Authority, biological control, predatory mite

Til dokument

Sammendrag

Atheta-System with the rove beetle Atheta coriaria (Kraatz 1856) as the active organism is sought to be used as a biocontrol agent for augmentation biological control in Norway. Atheta-System is intended for use against soil dwelling stages of fungus gnats (e.g. Bradysia paupera), shore flies (Scatella stagnalis), and thrips (e.g. Frankliniella occidentallis) in greenhouses, plastic tunnels, and other closed or controlled climate cultivations of horticultural crops, incl. soft-fruit crops, vegetables, ornamentals, and kitchen herbs. VKM’s conclusions are as follows Distribution, especially if the organism is found naturally in Norway Atheta coriaria is established (naturalized) in Norway since 1919 and has been reported numerous times from Agder in the South to Trøndelag in mid-Norway. The potential of the organism for establishment and spread under Norwegian conditions specified for use in greenhouses and open field The thermal thresholds of A. coriaria are not well-studied, but its current distribution in Southern and mid-Scandinavia shows that it tolerates relatively low winter temperatures, and that the Norwegian summer climate allows for successful reproduction. A. coriaria overwinters in the soil, which provides a relatively sheltered environment. Adults disperse rapidly by flying. All life stages can be vectored by humans – mainly by movement of soil and compost material. Thus, further spread northwards in Norway is predicted irrespective of additional introductions. It is unknown if it can enter diapause under greenhouse conditions. Any ambiguities regarding the taxonomy which hamper risk assessment There are no major taxonomic challenges related to the assessment of A. coriaria. Assessment of the product and the organism with regard to possible health risk VKM is unaware of reports of harm inflicted to humans by A. coriaria itself. Atheta-System comes with the cosmopolitan cheese mite (Tyrophagus putrescentiae), serving as food for A. coriaria. As with most mites, T. putrescentiae may induce allergic reactions in sensitive persons handling the product. Key words: VKM, risk assessment, Norwegian Scientific Committee for Food and Environment, Norwegian Food Safety Authority, biological control, rove beetle

Sammendrag

The EU has developed a Directive on Sustainable Use of Chemical Pesticides (2009/128/EC) (SUD) that aims to enhance the use of non-chemical alternatives to pesticides like microbial plant protection products (PPP). The number of authorized microbial PPP for plant protection has increased globally during the last decade. There is, however, variation between different countries. Sweden and Denmark have for example each authorized 20 microbial PPP while Norway has only authorized four microbial PPP. Norway has also received significantly fewer applications for authorization of microbial PPP than the other Scandinavian countries. We explore possible explanations for the observed differences. Our results show that that the regulations in the three countries had similar requirements for the authorisation of microbial PPP. The size of the market is somewhat smaller in Norway than in Sweden and Denmark, and could therefore explain some of the differences. We suggest, however, that the most important explanation is implementation differences in terms of different decisions made in the authorization process. By comparing the authorization process for three microbial PPP in the Scandinavian countries, we found that Norway used more time for the product authorization decisions. Norway assess the same types of microbial PPP more restrictively with respect to environmental aspects and especially human health risks.