Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2019

Sammendrag

Sweet cherry production worldwide is grown in the open land. Production technique is more or less similar with scions grafted on dwarfing and semi-dwarfing rootstock and trees arranged in single rows. Sweet cherries can be grown in Norway in areas with suitable local climatic conditions up to 60°N. All orchards have high density planting systems and are rain covered. Rain-induced fruit cracking in cherries remains a problem at an international level. The most common systems in Norway are multibay high tunnel systems and retractable rain covers. Covered orchard tunnel systems offer not only the advantage of rain exclusion but also allow additional manipulation of the environment, tree growth and fruiting. In general, sweet cherry high tunnel production gives increased yields of larger fruit than in the open land, but investment costs are higher. This overview article describes results from different experiments about high tunnels sweet cherry production mainly conducted at Nibio Ullensvang, Norway during the last ten years.

Til dokument

Sammendrag

Cherries (Prunus avium L. and Prunus cerasus L.) are economically important fruit species in the temperate region. Both are entomophilous fruit species, thus need pollinators to give high yields. Since cherry’s flower is easy-to-reach, bees and other pollinators can smoothly collect nectar as a reward for doing transfer of pollen to receptive stigma. Nectar in cherry is usually attractive for insects, especially to honey bee (Apis melifera) who is the most common pollinator. Nectar is predominantly an aqueous solution of sugars, proteins, and free amino acids among which sugars are the most dominant. Trace amounts of lipids, organic acids, iridoid glycosides, minerals, vitamins, alkaloids, plant hormones, non-protein amino, terpenoids, glucosinolates, and cardenolides can be found in nectar too. Cherry flower may secrete nectar for 2–4 days and, depending on the cultivar, produces up to 10 mg nectar with sugar concentration from 28% to 55%. Detailed chemical analysis of cherry nectar described in this chapter is focused on sugar and phenolic profile in sour cherry. The most abounded sugars in cherry nectar was fructose, glucose, and sucrose, while arabinose, rhamnose, maltose, isomaltose, trehalose, gentiobiose, turanose, panose, melezitose, maltotriose, isomaltotriose, as well as the sugar alcohols glycerol, erythritol, arabitol, galactitol, and mannitol are present as minor constituents. Regarding polyphenolics, rutin was the most abundant phenolic compound followed by naringenin and chrysin. Cherry cultivars showed different chemical composition of nectar which implies that its content is cultivar dependent.

Til dokument

Sammendrag

Sweet cherry production worldwide is grown in the open land. Production technique is more or less similar with scions grafted on dwarfing and semi-dwarfing rootstock and trees arranged in single rows. Sweet cherries can be grown in Norway in areas with suitable local climatic conditions up to 60°N. All orchards have high-density planting systems and are rain covered. Rain-induced fruit cracking in cherries remains a problem at an international level. The most common systems in Norway are multibay high tunnel systems and retractable rain covers. Covered orchard tunnel systems offer not only the advantage of rain exclusion but also allow additional manipulation of the environment, tree growth and fruiting. In general, sweet cherry high tunnel production gives increased yields of larger fruit than in the open land, but investment costs are higher. One more advanced way of producing sweet cherries is to grow the trees in small pots in greenhouses. A greenhouse gives opportunity to control the temperature regime and in that way program the maturity of the fruits. Research is conducted to test different cultivars, rootstocks, training methods in high-density production systems (1 tree m-2) with different fertigation levels. Preliminary results show that the yield potential is much higher than in the open land with larger fruits. Challenges are to optimize the water and nutrition supply and adjust the temperatures to obtain large yields of high quality fruits during different periods of the season.