Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2022

Til dokument

Sammendrag

Beitetilbud, beitetrykk, bestandsovervåking, elg, hjort, hjortevilt, hjorteviltforvaltning, Norge, rådyr, villrein, Browse abundance, Browsing pressure, Moose, Norway, Population monitoring, Red deer, Reindeer, Roe deer, Ungulate management

Til dokument

Sammendrag

Like large carnivores, hunters both kill and scare ungulates, and thus might indirectly affect plant performance through trophic cascades. In this study, we hypothesized that intensive hunting and enduring fear of humans have caused moose and other forest ungulates to partly avoid areas near human infrastructure (perceived hunting risk), with positive cascading effects on recruitment of trees. Using data from the Norwegian forest inventory, we found decreasing browsing pressure and increasing tree recruitment in areas close to roads and houses, where ungulates are more likely to encounter humans. However, although browsing and recruitment were negatively related, reduced browsing was only responsible for a small proportion of the higher tree recruitment near human infrastructure. We suggest that the apparently weak cascading effect occurs because the recorded browsing pressure only partly reflects the long-term browsing intensity close to humans. Accordingly, tree recruitment was also related to the density of small trees 5–10 years earlier, which was higher close to human infrastructure. Hence, if small tree density is a product of the browsing pressure in the past, the cascading effect is probably stronger than our estimates suggest. Reduced browsing near roads and houses is most in line with risk avoidance driven by fear of humans (behaviorally mediated), and not because of excessive hunting and local reduction in ungulate density (density mediated).

Sammendrag

NIBIO har taksert elgbeite over ca. 3000 daa i Murudalen og Gausdal Vestfjell 2021 og 2022. Bjørk, vier, einer og furu var det eneste buskbeitet av betydning. Furu utgjorde kun rundt 5% av beitetrærne, selv i furudominerte Murudalen. Særlig flaene (= terrenget over ca. 900 m.o.h.) i Gausdal var rik på beitetrær. Dalsidene derimot hadde få beitetrær, men til gjengjeld om lag dobbel så høy dekning av feltsjikt med høy verdi for elg. Særlig bringebær hadde lokalt høyt oppslag, og bidrar til at dalsidene er godt sommerbeite, selv med få beitetrær. Det tradisjonelle elgtrekket om høsten fra lavt til høyt terreng i Gausdal, og fra Gausdal til Murudalen, fremstår som en naturlig følge av hvordan vinter- og sommerbeite er fordelt i landskapet. Vi har beregnet at ernæringsmessig bæreevne er maks 0.9 elg/km2 (vinterbestand etter jakt) i Murudalen, 1.6 elg/km2 på flaene i Gausdal og kun 0.4 elg/km2 i dalsidene av Gausdal, mot 1.0 elg/km2 generelt i Sør-Norge. Beitepresset (andel beita skudd) tilsier at vinterbestanden siste 5-10 år har vært rundt den maksimale bæreevnen. Det er viktigst å følge skuddproduksjon og beitepress på bjørk i disse områdene, hvor furu eller ROS (rogn, osp, selje) i dag utgjør lite av beitet. Taksten omfattet delvis 11 kommuner. Resultatene er representative også for nærliggende areal med samme naturgrunnlag og beitepress som et av delområdene i taksten.

Til dokument

Sammendrag

1. Spatial resources accessible for the derivation of biodiversity indicators of the class ecosystem structure are sparse and disparate, and their integration into computer algorithms for biodiversity monitoring remains problematic. We describe ecochange as an R-package that integrates spatial analyses with a monitoring workflow for computing routines necessary for biodiversity monitoring. 2. The ecochange comprises three modules for data integration, statistical analysis and graphics. The first module currently downloads and integrates diverse remote sensing products belonging to the essential biodiversity class of structure. The module for statistical analysis calculates RasterStack ecosystem-change representations across areas of interest; this module also allows focusing on species habitats while deriving changes in a variety of indicators, including ecosystem areas, conditional entropy and fractal dimension indices. The graphics module produces level and bar plots that ease the development of indicator reports. 3. Its functionality is described with an example workflow to calculate ecosystem-class areas and conditional entropy across an area of interest contained in the package documentation. 4. We conclude that ecochange features procedures necessary to derive ecosystem structure indicators integrating the retrieval of spatially explicit data with the use of workflows to calculate/visualize biodiversity indicators at the national/regional scales.

Til dokument

Sammendrag

To meet international and national commitments to decrease emissions of fossil fuels, cities around the world must obtain information on their historical levels of emissions, identifying hotspots that require special attention. Direct atmospheric measurements of pollution sources are almost impossible to obtain retrospectively. However, tree rings serve as an archive of environmental information for reconstructing the temporal and spatial distribution of fossil-fuel emissions in urban areas. Here, we present a novel methodology to reconstruct the spatial and temporal contribution of fossil-fuel CO2 concentration ([CO2F]) in the urban area of Medellin, Colombia. We used a combination of dendrochronological analyses, radiocarbon measurements, and statistical modeling. We obtained annual maps of [CO2F] from 1977 to 2018 that describe changes in its spatial distribution over time. Our method was successful at identifying hotspots of emissions around industrial areas, and areas with high traffic density. It also identified temporal trends that may be related to socioeconomic and technological factors. We observed an important increase in [CO2F] during the last decade, which suggests that efforts of city officials to reduce traffic and emissions did not have a significant impact on the contribution of fossil fuels to local air. The method presented here could be of significant value for city planners and environmental officials from other urban areas around the world. It allows identifying hotspots of fossil fuels emissions, evaluating the impact of previous environmental policies, and planning new interventions to reduce emissions.

Til dokument

Sammendrag

Planting new forests has received scientific and political attention as a measure to mitigate climate change. Large, new forests have been planted in places like China and Ethiopia and, over time, a billion hectares could become available globally for planting new forests. Sustainable management of forests, which are available to wood production, has received less attention despite these forests covering at least two billion hectares globally. Better management of existing forests would improve forest growth and help mitigate climate change by increasing the forest carbon (C) stock, by storing C in forest products, and by generating wood-based materials substituting fossil C based materials or other CO2-emission-intensive materials. Some published research assumes a trade-off between the timber harvested from existing forests and the stock of C in those forest ecosystems, asserting that both cannot increase simultaneously. We tested this assumption using the uniquely detailed forest inventory data available from Finland, Norway and Sweden, hereafter denoted northern Europe. We focused on the period 1960 – 2017, that saw little change in the total area covered by forests in northern Europe. At the start of the period, rotational forestry practices began to diffuse, eventually replacing selective felling management systems as the most common management practice. Looking at data over the period we find that despite significant increases in timber and pulp wood harvests, the growth of the forest C stock accelerated. Over the study period, the C stock of the forest ecosystems in northern Europe increased by nearly 70%, while annual timber harvests increased at the about 40% over the same period. This increase in the forest C stock was close to on par with the CO2-emissions from the region (other greenhouse gases not included). Our results suggest that the important effects of management on forest growth allows the forest C stock and timber harvests to increase simultaneously. The development in northern Europe raises the question of how better forest management can improve forest growth elsewhere around the globe while at the same time protecting biodiversity and preserving landscapes.

Til dokument

Sammendrag

Key message: Using satellite-based maps, Ceccherini et al. (Nature 583:72-77, 2020) report abruptly increasing harvested area estimates in several EU countries beginning in 2015. Using more than 120,000 National Forest Inventory observations to analyze the satellite-based map, we show that it is not harvested area but the map’s ability to detect harvested areas that abruptly increases after 2015 in Finland and Sweden. Keywords: Global Forest Watch, Landsat, Remote sensing, National Forest Inventory, Greenhouse Gas Inventory