Stephen Amiandamhen
Forsker
(+47) 413 63 419
stephen.amiandamhen@nibio.no
Sted
Ås - Bygg H8
Besøksadresse
Høgskoleveien 8, 1433 Ås
Sammendrag
The study investigated the feasibility for partial phosphate binder replacement with lignin in phosphate bonded paper sludge composites. A central composite experimental design (CCD) was used to optimise the board manufacturing process, wherein the effect of process temperature, as well as lignin content were investigated with respect to board properties based on the ASTM D1037 standard. Moduli of rupture and elasticity of up to 7.2 MPa and 2.8 GPa respectively in the boards with lignin content of 36–43 wt% and formulation temperatures of 118–133 °C were observed. The phosphate binder input, which bears a huge cost in the process was reduced by up to 49% with lignin incorporation. The effect of pine veneer lamination on the strength properties of the composite boards was investigated. Pine veneer lamination improved mechanical properties, with the moduli of rupture and elasticity increasing from 7.2 to 22.1 MPa (67% increase) and 2.8 to 3.6 GPa (22% increase) respectively. The economic viability of the boards produced was also assessed and the results showed that the required selling price for the composite boards is competitive in the local market for inexpensive construction materials, sold at wholesale prices for between R 158/m2 and R 295/m2, depending on product finishing.
Forfattere
Stephen Amiandamhen Synne Strømmen Ingeborg Olsdatter Ohren Nordraak Andreas Treu Erik LarnøySammendrag
This study investigated the potential of wood particles from Ciol®-treated wood in particleboard production. Ciol® is a renewable formulation from water, citric acid, and sorbitol, which has been commercially developed as a promising alternative for wood modification. Radiata pine wood was impregnated with 60% and 85% concentrations of the Ciol® solution for 150 mins. The impregnated boards were cured and subsequently planned. Particleboards were thereafter produced from the wood shavings using urea formaldehyde (UF) and melamine urea formaldehyde resin (MUF). The boards were produced with or without the use of ammonium nitrate as a hardener. The wood particles and produced boards were characterized via analytical techniques and standard test methods. The effect of Ciol® treatment and its concentration on the properties of the shavings and the particleboards was investigated as well as the effect of the resin type on the panel properties. The use of MUF without the hardener gave the best bending strength of 13 N/mm² and modulus of elasticity of 3187 N/mm². However, there was no significant difference in the results obtained when the hardener was added to MUF resins. Recycling Ciol®-treated wood shavings in particleboard production proved to be a promising approach with MUF resins.
Sammendrag
Det er ikke registrert sammendrag