Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2004

Sammendrag

Introduction: The objectives of the present study were to monitor H. annosum colonization rate (Hietala et al., 2003) and expression of host chitinases in clonal Norway spruce material with differing resistances. Transcript levels of three chitinases, representing classes I, II and IV, were monitored with real-time PCR.Material and MethodsInoculation experiment: Ramets of two 32 -year-old clones differing in resistance were employed as host material. Inoculation and wounding was performed. A rectangular strip containing phloem and cambium, with the inoculation site in the middle, was removed 3, 7 and 14 days after inoculation.Quantification of fungal colonizationMultiplex real-time PCR detection of host and pathogen DNA was performed (Hietala et al., 2003). Quantification of gene expression: Chitinase levels were monitored with Singleplex real-time PCR.Results and ConclusionsThe colonization profiles provided by the quantitative multiplex real-time PCR procedure (Hietala et al., 2003), when combined with spatial and temporal transcript profiling of 3 chitinases, provide a useful basis for identifying defense related genes, and for assessing their impact on pathogen colonization rates.Three days after inoculation, comparable colonization levels were observed in both clones in the area immediately adjacent to inoculation. Fourteen days after infection, pathogen colonization was restricted to the area immediately adjacent to the site of inoculation for the strong clone (589), but had progressed further into the host tissue in the weak (409) clone.Transcript levels of the class II and IV chitinases increased following wounding or inoculation, while the transcript level of the class I chitinase declined following these treatments. Transcript levels of the class II and class IV chitinases were higher in areas immediately adjacent to the inoculation site in 589 than in similar sites in 409 three days after inoculation, suggesting that the clones differ in the rate of chitinase-related signalperception.

Sammendrag

We have monitored the H. annosum colonization rate and expression of host chitinases in Norway spruce material with differing resistances. Transcript levels of three chitinases, representing classes I, II and IV, were monitored with real-time PCR. Ramets of two 32 -year-old clones differing in resistance were employed as host material and inoculation and wounding was performed. Quantification of fungal colonization: Multiplex real-time PCR detection of host and pathogen DNA was performed. Chitinase transcript levels were also monitored with real-time PCR. Three days after inoculation, comparable colonization levels were observed in both clones in the area immediately adjacent to inoculation. Fourteen days after infection, pathogen colonization was restricted to the area immediately adjacent to the site of inoculation for the strong clone (589), but had progressed further into the host tissue in the weak clone (409). Transcript levels of the class II and IV chitinases increased following wounding or inoculation, while the transcript level of the class I chitinase declined following these treatments. Transcript levels of the class II and class IV chitinases were higher in areas immediately adjacent to the inoculation site in 589 than in similar sites in 409 three days after inoculation, suggesting that the clones differ in the rate of chitinase-related signal perception. The spatiotemporal accumulation patterns obtained for the two clones used are consistent with their resistance classifications, these warranting further and more detailed studies on these chitinases.

Sammendrag

Pathogen colonization and transcript levels of three host chitinases,putatively representing classes I, II, and IV, were monitored with real-time PCR after wounding and bark infection by Heterobasidion annosum in 32-year-old trees of Norway spruce (Picea abies) with low (clone 409) or high (clone 589) resistance to this pathogen. Three days after inoculation, comparable colonization levels were observed in both clones in the area immediately adjacent to inoculation. At 14 days after infection, pathogen colonization was restricted to the area immediately adjacent to the site of inoculation for clone 589 but had progressed further into the host tissue in clone 409. Transcript levels of the class II and IV chitinases increased after wounding or inoculation, but the transcript level of the class I chitinase declined after these treatments. Transcript levels of the class II and class IV chitinases were higher in areas immediately adjacent to the inoculation site in clone 589 than in similar sites in clone 409 3 days after inoculation. This difference was even more pronounced 2 to 6 mm away from the inoculation point, where no infection was yet established, and suggests that the clones differ in the rate of chitinase-related signal perception or transduction. At 14 days after inoculation, these transcript levels were higher in clone 409 than in clone 589, suggesting that the massive upregulation of class II and IV chitinases after the establishment of infection comes too late to reduce or prevent pathogen colonization.

Sammendrag

Conventional extreme value statistics and the calculation of return periods implicitly assume stationarity of distributions and statistical independence at least asymptotically (most extreme events).We demonstrate, using a collection of river runoff time series from Southern Germany, that these assumptions are invalid, and that temporal as well as spatial correlations prevail instead: temporal differences of distributions are nearly synchronized within a region, and there are systematic trends of percentiles especially at low flow conditions within the 20th century.As a consequence, the estimated return periods of a given threshold flow are fluctuating, in some cases even in a dramatic fashion. On the other hand, a general trend towards an increase in flood frequencies cannot be stated on basis of our investigations, in accordance with other recent findings (Mudelsee et al. 2003), but contrary to general expectations drawn from climate change studies.

Sammendrag

Sampling the catchment outlet generally is assumed to be a convenient way to infer information about a variety of biogeochemical processes at the catchment scale as it provides a spatial and temporal integral of the predominating catchment output fluxes for a number of chemical compounds of interest.Moreover, the short-term dynamics and long-term trends of the hydrograph and of solute concentrations in the catchment runoff can provide information about the predominating processes at the catchment scale and can be used to refine conceptual and mathematical models.Additional measurements inside the catchment, e.g., of soil solution, groundwater, and stream water at different sites, are used to relate the findings to within-catchment processes and thus to further constrain hypotheses and models.

Sammendrag

Using Singular System Analysis (SSA), we extract a collection of significant long-term components (with dominant periods of at least 3 years) for a large number of river runoff records.At first glance, these long-term modes are a distinct feature of this variable, not contained in precipitation and temperature, and not easily correlated to commonly known long-term indices (NAO, SOI, NHT, SUN, etc.). However, low-pass filtered versions of these time series exhibit strikingly similar behavior, like common maxima, within a region (such as Southern Germany), pointing to a common origin.Although not an unequivocal example for synchronization, we quantify the degree of synchronization as a function of the regional extent of the data and propose a mechanism, stochastic resonance, discussed in climate dynamics, which is able to produce this collective behavior despite the lack of deterministic drivers. We also comment on air pressure-induced teleconnections between the different large scale oscillations in the climate system.