Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2006

Sammendrag

During snowmelt Oslo airport has on repeated occations experienced the formation of large meltwater ponds due to impermeable ice forming below the snowcover. The airport is situated on a large glacial outwash plane with coarse sandy gravely sediments, hence the area normaly has a high infiltration capacity. Focussed infiltration can cause fast transport of contaminants to the groundwater, hence improved understanding of the processes determining where and how the focussed infiltration takes place is important. Previously the melting process has been monitored successfully on a small scale (4 m2) using a two dimensional grid of permanently installed electrodes (French and Binley, 2004). In the present work snowmelt infiltration was monitored by time-lapse measurements of electrical resistivity using grounded electrodes on 4 and 20 m2 plots and a capacitively coupled resistivity system (Ohmmapper, Geometrics) on a larger scale. While the smaller scale systems provide 3D images the capacitively coupled system was used to monitor changes in two dimensional vertical sections in a retention pond adjacent to one of the runways. The area covered by 4 lines was 170 m by 340 m. The initial data were collected late in the spring (2006) during the final stages of the snowmelt. The lines were repeated later in the year when the soil profile was dryer. The lines show good consistency in the description of the general geology of the subsurface and the time-lapse changes describe the infiltration pattern that occurred during snowmelt and subsequent drainage. The surveys provide useful information about the differences in spatial distribution of snowmelt infiltration at different scales. And there are good indications that capacitively coupled resistivity surveys can be used to describe infiltration processes at relatively large spacio-temporal scales. References French, H. and A. Binley, 2004, Snowmelt infiltration: monitoring temporal and spatial variability using time-lapse geophysics, J. Hydrology, 297, 174-186

Sammendrag

Vann i anlegg og drift (vanndirektivet, etc) Anleggsfase: Krav til utslepp frå anleggsområder. Søknad om utslepp. Aktuelle problem (olje, partiklar, ammonium, etc). Korleis få krav inn i kontrakten, oppfølging. Praktiske løysingar. Fylling i vassdrag, forhold til strandsoner, Driftsfase: Krav til overvatn frå veg og tunnelar. Behandling av vaskevatn frå tunnel. Rensedammar/fordrøyningsbasseng. Korleis få krav inn i kontrakten, oppfølging. Praktiske løysingar.

Sammendrag

This document contains a summary of some techniques that can be used for CO2 monitoring considering a field laboratory site with an injection depth in the order of hundreds of meters. We will mainly focus on seismic: 3D and 4D surface seismic, acoustic image, multicomponent (MC) seismic, microseismic monitoring, boreholebased seismic, 4D cross-hole seismic surveying, 4D vertical seismic profiling (VSP); acoustic sonar bathimetry techniques; gravimetric techniques; electrical or electromagnetic techniques: electrical resistance tomography (ERT), ground penetrating radar, borehole radar, magnetotellurics; but geochemical techniques are included, like isotope methods, geochemical tracers, water chemistry. Finally, soil gas techniques and remote sensing methods area also described in this document. Storage of CO2 in geological formations is feasible on industrial scale. At the same time there is a requirement from Environmental and Health Authorities for documentation of subsurface behaviour of CO2. In this document we summarize different approaches for monitoring of subsurface migration, leakage and chemical reactions of CO2. We suggest performing studies at different scales including laboratory and field experiments. The methods we suggest has special emphasize on early detection of small amounts of CO2 migration. Of that reason the main focus of this report is on indirect geophysical monitoring (viz seismic, electrical and electromagnetic methods). To document subsurface reactions we also include geochemical methods. We suggest including ecological monitoring as an integrated part of the field experiments. Ecological monitoring will provide detection (or confirmation) of moderate CO2 leakage to the soil surface, and at the same time quantify effects on the vegetation of potentially leakages from geologically-stored CO2. In order to add value to the monitoring program, we recommend initiating simulation of monitoring experiments as early as possible in the project. Simulation of monitoring experiments should then be coupled to inverse flow simulations in order to optimize the monitoring program. Finally, monitoring of two specific field sites is suggested: The Brumunddal sandstone, and the Svelvik ridge in the outlet of the Drammensfjord. The preliminary budget for monitoring a field experiment on each side is 27.3 and 30.2 million NOK respectively. Recommendations for further work include: " Geological characterization of storage site and surrounding area. " Production of geological and numerical flow models of storage site and surrounding area. " Simulation of CO2 injection into the geological formation to identify potential migration and thus leakage points. This includes physical and chemical changes of the reservoir rock and surrounding strata. " Risk assessment to identify features, events and processes that might lead to the migration of CO2 and potential leakage. " Establish monitoring based on step 3 and 4 above. This includes monitoring of subsurface and surface area surrounding the storage site. " History matching of observations and simulation results (and if necessary modification of monitoring acquisitions).

Sammendrag

Beregningene utført i dette prosjektet ga som vist stor variasjon og understreker i høyeste grad usikkerhetene som ligger i beregninger av stofftransport. Det anbefales å videreføre den sammenlignende prøvetakingen i vassdraget, slik at denne også kan dekke et mer normalt år mht. nedbør og avløpsforhold. På sikt anbefales det å øke prøvetakingsfrekvensen i det igangværende programmet hos Fylkesmannen i Østfold (FMOS) til en gang pr uke med mulighet for hyppigere uttak i flomepisoder. Samtidig bør en ringtest for laboratoriene utføres, da denne undersøkelsen har vist store avvik i resultater fra prøver tatt på samme sted og tid av FMOS og Bioforsk og analysert ved to ulike laboratorier. Resultater fra EU prosjektet EUROHARP, gjennomført i Vansjø-Hobøl, viste at alle tilførselsmodellene er relativt gode til simulering av vannføringen, mens modelleringen av fosfortransport var problematisk. På det nåværende tidspunkt er modellene ikke egnet til effektberegning av jordarbeidingstiltak for norske forhold.

Sammendrag

Sammenfattende presentasjon av ulike tiltak for å håndtere avrenning av forurenset overvann fra sterkt trafikkerte veger før utslipp til resipient