Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2020

Til dokument

Sammendrag

Probiotics confer a health benefit on the host and could be used as a good alternative to antibiotics. Probiotics are strain‐specific when exerting their function, so it is necessary to identify them to strain level. In recent years, intra‐species molecular typing and identification methods have developed rapidly, which commonly are used for typing the main pathogenic bacteria and rare for studies on probiotic typing, whilst it is imperative. This article describes molecular typing methods including AFLP, RAPD, PFGE, ribotyping, MLST, rep‐PCR and whole‐genome sequencing to identity some aquatic probiotics approved by the Ministry of Agriculture of China, which are Bifidobacterium, Enterococcus, Lactobacillus, Pediococcus, Aspergillus, Bacillus, Rhodopseudomonas palustris and Streptococcus thermophilus. In addition, the principles, applications, advantages and disadvantages of these typing methods are also discussed.

Til dokument

Sammendrag

Diseases caused by viruses threaten the production industry and food safety of aquaculture which is a great animal protein source. Grass carp reovirus (GCRV) has caused tremendous loss, and the molecular function of viral proteins during infection needs further research, as for most aquatic viruses. In this study, interaction between GCRV major outer capsid protein VP4 and RIG-I, a critical viral RNA sensor, was screened out by GST pull-down, endogenous immunoprecipitation and subsequent LC-MS/MS, and then verified by co-IP and an advanced farred fluorescence complementation system. VP4 was proved to bind to the CARD and RD domains of RIG-I and promoted K48-linked ubiquitination of RIG-I to degrade RIG-I. VP4 reduced mRNA and promoter activities of key genes of RLR pathway and sequential IFN production. As a consequence, antiviral effectors were suppressed and GCRV replication increased, resulting in intensified cytopathic effect. Furthermore, results of transcriptome sequencing of VP4 stably expressed CIK (C. idella kidney) cells indicated that VP4 activated the MyD88-dependent TLR pathway. Knockdown of VP4 obtained opposite effects. These results collectively revealed that VP4 interacts with RIG-I to restrain interferon response and assist GCRV invasion. This study lays the foundation for anti-dsRNA virus molecular function research in teleost and provides a novel insight into the strategy of immune evasion for aquatic virus.

Til dokument

Sammendrag

Quorum quenching (QQ) blocks bacterial cell-to-cell communication (i.e., quorum sensing), and is a promising antipathogenic strategy to control bacterial infection via inhibition of virulence factor expression and biofilm formation. QQ enzyme AiiO-AIO6 from Ochrobactrum sp. M231 has several excellent properties and shows biotherapeutic potential against important bacterial pathogens of aquatic species. AiiO-AIO6 can be secretory expressed in Bacillus subtilis via a non-classical secretion pathway. To improve AiiO-AIO6 production, four intracellular protease-deletion mutants of B. subtilis 1A751 were constructed by individually knocking out the intracellular protease-encoding genes (tepA, ymfH, yrrN and ywpE). The AiiO-AIO6 expression plasmid pWB-AIO6BS was transformed into the B. subtilis 1A751 and its four intracellular protease-deletion derivatives. Results showed that all recombinant intracellular protease-deletion derivatives (BSΔtepA, BSΔymfH, BSΔyrrN and BSΔywpE) had a positive impact on AiiO-AIO6 production. The highest amount of AiiO-AIO6 extracellular production of BSΔywpE in shake flask reached 1416.47 U/mL/OD600, which was about 121% higher than that of the wild-type strain. Furthermore, LC–MS/MS analysis of the degrading products of 3-oxo-C8-HSL by purification of AiiO-AIO6 indicated that AiiO-AIO6 was an AHL-lactonase which hydrolyzes the lactone ring of AHLs. Phylogenetic analysis showed that AiiO-AIO6 was classified as a member of the α/β hydrolase family with a conserved “nucleophile-acid-histidine” catalytic triad. In summary, this study showed that intracellular proteases were responsible for the reduced yields of heterologous proteins and provided an efficient strategy to enhance the extracellular production of AHL lactonase AiiO-AIO6.

Til dokument

Sammendrag

Aquaculture is a fast‐growing and rapidly expanding industry in the world. Probiotics are widely used in aquaculture and have provided benefits to aquatic animal health, and it is also a promising alternative to antibiotics for control of fish diseases. With the development of biotechnology, new expression systems and novel techniques for the surface display of heterologous proteins in surface of probiotics cells have been developed. This review provides an overview of the systems and strategies for displaying functional proteins on the surface of probiotics commonly used in aquaculture, which are Bacillus subtilis, Bacillus thuringiensis, lactic acid bacteria represented by Lactococcus lactis and yeast. Their applications in aquaculture especially for oral vaccine development afforded by this technology and prospects and challenges associated with this technology are also highlighted.

Sammendrag

Klimaendringer antas å føre til mer nedbør, som kan resultere i økning av avrenning og tap av næringsstoffer. Denne rapporten presenterer resultater fra målinger foretatt ved Kvithamar lysimeterforsøk under både god og dårlig drenering. Resultatene viser, noe overraskende, at det er mindre grøfteavrenning ved dårlig drenering samtidig som tap av næringsstoff øker. Det er stor variasjon i både avrenning og tap av næringsstoffer mellom grøftene. Grunnvannsnivået ser ut til å endres fortere under gode dreneringsforhold. God drenering fører til mindre overflateavrenning, noe som har en positiv effekt på reduksjon av erosjon.

Til dokument

Sammendrag

The reliability of short-term weather forecast provided by COSMO model in simulating reference evapotranspiration (ET0) was evaluated in 7 study sites distributed in 4 countries (Italy, Norway, Romania and Spain). The main objective of the study was to assess the optimal scenario for calculating ET0, using the FAO-56 Penman-Monteith (PM) equation, by separately considering the accuracy in the use of “past” and “forecast” data input. Firstly, each forecasted variable (air temperature, Tair; relative humidity, RH; wind speed, u2; solar radiation, Rs) and ET0 were compared with in situ observations at hourly and daily scales. Moreover the seasonality effect in the forecast performance was evaluated. Secondly, simulated ET0 were computed every three days with: (i) a “past scenario” that used the observed data input measured in situ during the previous three days, (ii) a “forecast scenario” that used the forecasted input variables for the next three days; and compared with (iii) actual ET0 obtained from the in situ measured data. A general good agreement was found between observed and forecasted agro-meteorological parameters at the different explored time-scales. The best performance was obtained for Tair and Rs, followed by RH and u2. Globally, the comparison between ET0 from the measured and forecasted data input showed high performance, with R2 and RMSE of 0.90 and 0.68 mm d−1. ET0 simulations resulted more accurate using the “forecast scenario” (1.7% overestimation), rather than using the “past scenario” (2.6% underestimation). These results open promising perspectives in the use of forecast for ET0 assessment for different agriculture practices and particularly for irrigation scheduling under water scarcity conditions.