Publikasjoner
NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.
2021
Forfattere
A. Astover J. Escuer-Gatius A. Don K. Armolaitis G. Barančíková M. Bolinder S. Cornu M. De Boever R. Farina C. Foldal R. Jandl M. Kasper D. Fornara A. Govednik R. Mihelič Vrščaj B. B. Huyghebaert R. Kasparinskis S.G. Keel P. Laszlo A. Lehtonen S. Madenoğlu G. Maria da Conceição Christophe Moni L. O'Sullivan D. Wall G. Lanigan B. Sánchez Gimeno A. Taghizadeh-ToosiSammendrag
Deliverable 2.12. This report presents a picture of the inventory of the different models accounting and monitoring soil quality and soil carbon stocks used in 21 different countries in Europe, and especially for the reporting of greenhouse gas (GHG) emissions to the UNFCCC (UNFCCC, 2020). The report synthesizes the information collected regarding the use of these models both at national and farm scale, as well as information of other models for soil quality monitoring, by different actors (policy making, farmers, and extension services). The study identified a big variability in the models used at national level and GHG reporting, where the Yasso07 model is currently the most widely used, and with several countries planning its implementation in the future. The number of models used at the farm scale to estimate SOC change presented an even bigger variability than those reported at the national scale, including some of the models included in the national scale, but also incorporating smaller spatial models intended for use at the farm scale, at the field scale or even at smaller scales. Most of the models are intended for mineral soils, both arable or grasslands, and only a few are reported for organic soils and/or other land use. A big heterogeneity was also present in the reported soil quality models (besides those used for accounting for SOC change). Two models included in the national and farm scale are also included here (RothC and Yasso07). The most reported soil quality models focus on greenhouse gas (GHG) emissions estimation and leaching, and are mainly related to the nitrogen cycle, but also to other nutrients, and soil physical properties. Our results show that synergies derived from European collaborations are not fully used but offer the possibility to enhance the quality of model applications for national GHG reporting and at smaller scales for the support of farm management.
Forfattere
Palingamoorthy Gnanamoorthy Qinghai Song Junbin Zhao Yiping Zhang Yuntong Liu Wenjun Zhou Liqing Sha Zexin Fan Pramit Kumar Deb BurmanSammendrag
Subtropical forests are important ecosystems globally due to their extensive role in carbon sequestration. Extreme climate events are known to introduce disturbances in the ecosystem that cause long-term changes in carbon balance and radiation reflectance. However, how these ecosystem function changes contribute to global warming in terms of radiative forcing (RF), especially in the years following a disturbance, still needs to be investigated. We studied an extreme snow event that occurred in a subtropical evergreen broadleaved forest in south-western China in 2015 and used 9 years (2011–2019) of net ecosystem CO2 exchange (NEE) and surface albedo (α) data to investigate the effect of the event on the ecosystem RF changes. In the year of the disturbance, leaf area index (LAI) declined by 40% and α by 32%. The annual NEE was −718 ± 128 g C m−2 as a sink in the pre-disturbance years (2011–2014), but after the event, the sink strength dropped significantly by 76% (2015). Both the vegetation, indicated by LAI, and α recovered to pre-disturbance levels in the fourth post-disturbance year (2018). However, the NEE recovery lagged and occurred a year later in 2019, suggesting a more severe and lasting impact on the ecosystem carbon balance. Overall, the extreme event caused a positive (warming effect) net RF which was predominantly caused by changes in α (90%–93%) rather than those in NEE. This result suggests that, compared to the climate effect caused by forest carbon sequestration changes, the climate effect of α alterations can be more sensitive to vegetation damage induced by natural disturbances. Moreover, this study demonstrates the important role of vegetation recovery in driving canopy reflectance and ecosystem carbon balance during the post-disturbance period, which determines the ecosystem feedbacks to the climate change.
Forfattere
Wenjun Zhou Jing Zhu Hongli Ji John Grace Liqing Sha Qinghai Song Yuntong Liu Xiaolong Bai Youxing Lin Jinbo Gao Xuehai Fei Ruiwu Zhou Jianwei Tang Xiaobao Deng Guirui Yu Junhui Zhang Xunhua Zheng Junbin Zhao Yiping ZhangSammendrag
With large area of primary tropical rainforest converted into rubber (Hevea brasiliensis) plantation in Southeast Asia, it is necessary to examine the change in soil CO2 and CH4 emissions, and their underlying drivers in tropical rainforest (TRF) and rubber plantation. In TRF and RP in Xishuangbanna Southwest China, we measured the soil CO2 , CH4 , temperature, and water content once each week from 2003 to 2008, and twice weeks in 2013 and 2014. Additionally, the concentrations of soil carbon (C) and nitrogen (N) fractions from 2013 to 2014 were observed. Inputs of litter and live, dead, decomposed fine roots dynamics were also included. TRF transplanted to RP did not change significantly the annual soil CO2 emissions (TRF, 359 ± 91 and RP 352 ± 41 mg CO2 m−2 h−1) but decreased soil CH4 uptake significantly (TRF, −0.11 ± 0.18 mg CH4 m−2 h−1) RP, −0.020 ± 0.087 mg CH4 m−2 h−1). The most important influence on soil CO2 and CH4 emissions in the RP was the leaf area index and soil water content, respectively, whereas the soil water content, soil temperature, and dead fine roots were the most important factors in the TRF. Variations in the soil CO2 and CH4 caused by land-use transition were individually explained by soil temperature and fine root growth and decomposition, respectively. The results show that land-use change varied the soil CH4 and CO2 emission dynamics and drivers by the variation of soil environmental and plant's factors.
Forfattere
Junbin Zhao Sparkle L. Malone Christina L. Staudhammer Gregory Starr Henrik Hartmann Steven. F. OberbauerSammendrag
Premise Wetland plants regularly experience physiological stresses resulting from inundation; however, plant responses to the interacting effects of water level and inundation duration are not fully understood. Methods We conducted a mesocosm experiment on two wetland species, sawgrass (Cladium jamaicense) and muhly grass (Muhlenbergia filipes), that co-dominate many freshwater wetlands in the Florida Everglades. We tracked photosynthesis, respiration, and growth at water levels of −10 (control), 10 (shallow), and 35 cm (deep) with reference to soil surface over 6 months. Results The response of photosynthesis to inundation was nonlinear. Specifically, photosynthetic capacity (Amax) declined by 25% in sawgrass and by 70% in muhly grass after 1–2 months of inundation. After 4 months, Amax of muhly grass in the deep-water treatment declined to near zero. Inundated sawgrass maintained similar leaf respiration and growth rates as the control, whereas inundated muhly grass suppressed both respiration and growth. At the end of the experiment, sawgrass had similar nonstructural carbohydrate pools in all treatments. By contrast, muhly grass in the deep-water treatment had largely depleted sugar reserves but maintained a similar starch pool as the control, which is critical for post-stress recovery. Conclusions Overall, the two species exhibited nonlinear and contrasting patterns of carbon uptake and use under inundation stress, which ultimately defines their strategies of surviving regularly flooded habitats. The results suggest that a future scenario with more intensive inundation, due to the water management and climate change, may weaken the dominance of muhly grass in many freshwater wetlands of the Everglades.
Forfattere
Sparkle L. Malone Junbin Zhao John S. Kominoski Gregory Starr Christina L. Staudhammer Paulo C. Olivas Justin C. Cummings Steven F. OberbauerSammendrag
How aquatic primary productivity influences the carbon (C) sequestering capacity of wetlands is uncertain. We evaluated the magnitude and variability in aquatic C dynamics and compared them to net ecosystem CO2 exchange (NEE) and ecosystem respiration (Reco) rates within calcareous freshwater wetlands in Everglades National Park. We continuously recorded 30-min measurements of dissolved oxygen (DO), water level, water temperature (Twater), and photosynthetically active radiation (PAR). These measurements were coupled with ecosystem CO2 fluxes over 5 years (2012–2016) in a long-hydroperiod peat-rich, freshwater marsh and a short-hydroperiod, freshwater marl prairie. Daily net aquatic primary productivity (NAPP) rates indicated both wetlands were generally net heterotrophic. Gross aquatic primary productivity (GAPP) ranged from 0 to − 6.3 g C m−2 day−1 and aquatic respiration (RAq) from 0 to 6.13 g C m−2 day−1. Nonlinear interactions between water level, Twater, and GAPP and RAq resulted in high variability in NAPP that contributed to NEE. Net aquatic primary productivity accounted for 4–5% of the deviance explained in NEE rates. With respect to the flux magnitude, daily NAPP was a greater proportion of daily NEE at the long-hydroperiod site (mean = 95%) compared to the short-hydroperiod site (mean = 64%). Although we have confirmed the significant contribution of NAPP to NEE in both long- and short-hydroperiod freshwater wetlands, the decoupling of the aquatic and ecosystem fluxes could largely depend on emergent vegetation, the carbonate cycle, and the lateral C flux.
Forfattere
Matthias Vanmaercke Panos Panagos Tom Vanwalleghem Antonio Hayas Saskia Foerster Pasquale Borrelli Mauro Rossi Dino Torri Javier Casali Lorenzo Borselli Olga Vigiak Michael Maerker Nigussie Haregeweyn Sofie De Geeter Wojciech Zglobicki Charles Bielders Artemi Cerdà Christian Conoscenti Tomas de Figueiredo Bob Evans Valentin Golosov Ion Ionita Christos Karydas Adam Kertesz Josef Krasa Caroline Le Bouteiller Maria Radoane Ratko Ristic Svetla Rousseva Milos Stankoviansky Jannes Stolte Christian Stolz Rebecca Bartley Scott Wilkinson Ben Jarihani Jean PoesenSammendrag
Soil erosion is generally recognized as the dominant process of land degradation. The formation and expansion of gullies is often a highly significant process of soil erosion. However, our ability to assess and simulate gully erosion and its impacts remains very limited. This is especially so at regional to continental scales. As a result, gullying is often overlooked in policies and land and catchment management strategies. Nevertheless, significant progress has been made over the past decades. Based on a review of >590 scientific articles and policy documents, we provide a state-of-the-art on our ability to monitor, model and manage gully erosion at regional to continental scales. In this review we discuss the relevance and need of assessing gully erosion at regional to continental scales (Section 1); current methods to monitor gully erosion as well as pitfalls and opportunities to apply them at larger scales (section 2); field-based gully erosion research conducted in Europe and European Russia (section 3); model approaches to simulate gully erosion and its contribution to catchment sediment yields at large scales (section 4); data products that can be used for such simulations (section 5); and currently existing policy tools and needs to address the problem of gully erosion (section 6). Section 7 formulates a series of recommendations for further research and policy development, based on this review. While several of these sections have a strong focus on Europe, most of our findings and recommendations are of global significance.
Forfattere
Hallvard JensenSammendrag
Det er ikke registrert sammendrag
Forfattere
Manuel Helbig Tatjana Zivkovic Pavel Alekseychik Mika Aurela Eugénie S. Euskirchen Lawrence B. Flanagan Timothy J. Griffis Carole Helfter Takashi Hirano Elyn Humphreys Gerard Kiely Randall Kolka Paul Leahy Annalea Lohila Ivan Mammarella Masahito Ueyama Mats B. Nilsson Frans-Jan W. Parmentier Matthias Peichl Janne Rinne Daniel T. Roman Oliver Sonnentag Eeva-Stiina Tuittila Timo Vesala Patrik Vestin Simon Weldon Per WeslienSammendrag
Det er ikke registrert sammendrag
Forfattere
Csilla FarkasSammendrag
Det er ikke registrert sammendrag
Forfattere
Tamaryn A. Asbury Rhett Bennett Aidan Price Charlene da Silva Markus Bürgener Juliana D. Klein Simo Maduna N. Sidat S. Fernando Aletta E. Bester-van der MerweSammendrag
In recent decades, a combination of increasing demand and economic globalisation has created a global market for elasmobranch products, especially the highly prized shark fins for Asian markets. Morphological species identification, as well as traditional cytochrome c oxidase subunit I (COI) barcoding of shark fins and other products, become challenging when in a processed state (such as dried or bleached shark fins). Here a mini-barcoding multiplex assay was applied to determine the species of origin in case studies from southern Africa involving confiscated shark fins in different states of processing. This highlights that the illegal shark fin trade in southern Africa to a large extent comprises threatened species. Matching of sequences of the confiscated fins against public databases revealed several threatened species, including the CITES-listed species Carcharodon carcharias, Carcharhinus longimanus, Isurus oxyrinchus, Rhynchobatus djiddensis and Sphyrna lewini. The findings highlight the need for improved trade monitoring, such as to eliminate illegal trade in shark fins, which can in part be achieved through more widespread genetic sampling of internationally traded products. However, a major limitation to DNA barcoding in general lies in the lack of curated voucher specimens available on public databases. To facilitate the application of molecular methods in a more comprehensive evaluation of elasmobranch trade regionally, a concerted effort to create reliable curated sequence data is recommended.