Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2011

Til dokument

Sammendrag

The Eurasian spruce bark beetle, Ips typographus, is one of the major forest insect pests in Europe, capable of mass-attacking and killing mature Norway spruce trees. The initiation and development of a new generation are strongly controlled by temperature and a warmer climate may affect the number of generations that is produced per year and hence the outbreak dynamics. Experimental knowledge regarding reproductive diapause adaptations is, however, too sparse for largescale assessments of future trends. We developed a model description of diapause induction, and used gridded observational temperature data to evaluate multiple combinations of day length and temperature thresholds to find the model parameterisation most coherent with I. typographus monitoring data from Scandinavia. The selected model parameterisation is supported by European literature data, though further experimental studies are required to analyse population specific adaptations and capacity for adjustments to changing climate conditions. Implementing the model description of reproductive diapause in a temperature driven model of bark beetle phenology (swarming activity and development from egg to mature bark beetle), enabled us to assess the length of the late summer swarming period that is a critical determinant of the risk of forest damage. By using regional climate model data we show that higher temperatures can result in increased frequency and length of late summer swarming events, producing a second generation in southern Scandinavia and a third generation in lowland parts of central Europe. Reproductive diapause will not prevent the occurrence of an additional generation per year, but the day length cues may restrict the length of the late summer swarming period.

Sammendrag

I 2010 ble det totalt analysert 112 prøver. Av disse mottok Bioforsk 74 merket "OK-program" og 38 uten henvisning til program. Patogenet ble påvist i 43 av prøvene. Av 2 analyserte importsendinger var 1 positiv. P.ramorum ble påvist i planteskoler og hagesentre i Sør-Norge. Det ble påvist hovedsakelig på rododendron, men på 4 lokaliteter ble det funnet på pyramidelyng (Pieris japonica). P. ramorum ble påvist også i parker og friområder på Vestlandet (Bergen og Stavanger-området). Det ble bare påvist på rododendron. De fleste prøver ble analysert med real-time PCR. Et mindre antall prøver ble analysert ved isolering på selektivt dyrkingsmedium      

Sammendrag

The appearance of new problems caused by Phytophthora species has triggered a number of sanitary surveillances and surveys in nurseries, parks and ornamental production fields in Norway the last 8 years. As a result, several Phytophthora species and new hosts for already known species have been detected in Norway. On woody plants of ornamental value we have found: P. cactorum, P. citricola (plurivora), P. cambivora, P. citrophthora, P. gonopodyides, P. inundata-like, P. megasperma complex, P. ramorum and P. syringae. P. cinnamomi has been found in potted plants in nurseries and in greenhouses, but never in established plants. P. taxon Pgchlamydo was isolated from the soil and debris of an ornamental nursery. In fruit and berry production we have found: P. cactorum, P. cryptogea, P. fragariae, P. megasperma complex and P. rubi. Other Phytopthtora species, reported to cause damages on trees or scrubs, have been detected only in greenhouses in Norway:  P. nicotianae, P. taxon niederhauserii and P. palmivora. Until the 2000s the identifications of Phytophthora species were made by morphological characters. In the last years we always combined morphology with molecular methods for identification (mainly ITS or cox sequencing).  

Sammendrag

Rotstokkråte i jordbær ble første gang rapportert i Norge i 1992 og siden er den blitt funnet på mer enn 100 steder over hele landet. Sykdommen forårsakes av Phytophthora cactorum og karakteriseres ved at unge blader visner raskt og hele planten visner i løpet av noen dager. I løpet av en sesong kan opptil 40 % av plantene dø. P. cactorum smitter plantene gjennom rothårene ved hjelp av svermesporer (zoosporer). Sykdommen starter oftest i fuktige områder av et felt siden sporene trenger vann for å bevege seg. Når en først har fått smitten i jorda er det vanskelig å bli kvitt den siden P. cactorum danner hvilesporer som kan overleve i flere år. Ulike jordbærsorter har ulik grad av mottakelighet for sykdommen. De mest brukte kommersielle sortene er dessverre mottakelige for sykdommen. Resistensegenskaper kan styres av ett eller flere gener og man kan derfor foredle fram resistente sorter. Tradisjonell foredling er tidkrevende og overføringa av resistens til en mottakelig sort vil kreve gjentatte tilbakekrysninger slik at man ikke mister alle de positive egenskapene til denne sorten. Ved å utvikle genetiske kart med markører for resistens kan man teste planter raskere og slik komme raskere fram til en resistent sort. Kunnskap om hvor mange resistensgener som er involvert i kampen mot skadegjøreren, når disse blir slått på og hvilke proteiner disse lager er også viktig. Når en skadegjører angriper en plante lager den bl.a. proteiner som bryter ned plantecelleveggen og svekker plantens immunforsvar. Planten på sin side lager resistensproteiner som gjenkjenner proteinene laget av skadegjøreren. Denne gjenkjennelsen setter i gang en forsvarsrespons hos planten. Resistensproteinene kodes for av resistensgener (R-gener). De fleste kjente R-genene inneholder en kort bestemt nukleotidsekvens. Dette fellestrekket gjør jakten på resistensgener enklere. I jakten på resistensgener i jordbær har vi valgt å arbeide med markjordbær (Fragaria vesca) istedenfor kommersielle jordbær (Fragaria x ananassa Duch.). Markjordbær er diploid og egner seg derfor godt for molekylærbiologiske studier. For å isolere R-gener og studere hvordan de ble uttrykt ble en mottakelig kultivar og en resistent kultivar smittet med zoosporer. Vevsprøver ble høstet i en tidsserie fra tid 0 (kontroll før smitting) til maksimum 8 dager etter smitting. Resultatet så langt viser at vi har isolert fragmenter fra mange ulike resistensgener og at disse blir uttrykt gjennom hele tidsrommet fra smitting til 8 dager etterpå.