Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2004

Sammendrag

Utvalgt Forelesning/Selected Talk: Survival and competitive successes of boreal forest trees depend on a balance between exploiting the full growing season and minimising frost injury through proper timing of hardening in autumn and dehardening in spring. Our research has shown that the female parents of Norway spruce adjust these timing events in their progeny according to the prevailing temperature conditions during sexual reproduction. Reproduction in a cold environment advances bud-set and cold acclimation in the autumn and dehardening and flushing in spring, whereas a warm reproductive environment delays these progeny traits by an unknown non-Mendelian mechanism. We have performed identical crosses in combination with timed temperature treatments during shorter and longer periods from female meiosis, pollen tube growth, syngamy and embryogenesis, tested the progenies for bud-set and frost hardiness, and concluded that the effect of temperature most likely is a response to accumulated heat during embryogenesis and seed maturation. Our first attempt to look for a molecular mechanism has revealed that transcription of PHYO, PHYP and PHYN and the class IV chitinase PaChi4 (using RealTime PCR) all show higher transcription levels in progenies born under cold conditions than their full-sibs born under warmer conditions. This result is consistent with preliminary findings that methylation of cytosine in total DNA is higher in progenies reproduce under warm conditions than their colder full-sib counterparts. If these observations are related to methylation, we may explain why progenies with a memory of a past time cold embryogenesis are more sensitive to short days than their full-sibs with a warmer embryonic history.

Sammendrag

Introduction: Survival and competitive successes of boreal forest trees depend on a balance between exploiting the full growing season and minimising frost injury through proper timing of hardening in autumn and dehardening in spring. Our research indicates that the female parents of Norway spruce adjust these timing events in their progeny according to the prevailing temperature conditions during sexual reproduction. Reproduction in a cold environment advances bud-set and cold acclimation in the autumn and dehardening and flushing in spring, whereas a warm reproductive environment delays these progeny traits by an unknown non-Mendelian mechanism. We are now looking for molecular mechanisms that can explain this “epigenetic” phenomenon. Material and methods: We have performed identical crosses with the same Norway spruce (Picea abies) parent, as discussed by Skrøppa & Johnsen (1994) and Johnsen et al. (1995), in combination with timed temperature treatments during shorter and longer periods from female meiosis, pollen tube growth, syngamy and embryogenesis and tested the progenies for bud-set and frost hardiness. We have followed the transcription of the spruce phytochromes PHYO, PHYP and PHYN and the class IV chitinase PaChi4 using Quantitative Multiplex Real-Time PCR. Results and conclusions: The effect of temperature on Adaptive properties is most likely a response to accumulated heat during embryogenesis and seed maturation. Our first attempt to look for a molecular mechanism has revealed that transcription of PHYO, PHYP and PHYN and the class IV chitinase PaChi4 (relative to alphaTubulin) all show higher transcription levels in progenies born under cold conditions than their full-sibs born under warmer conditions. This result is consistent with preliminary findings that methylation of cytosine in total DNA is higher in progenies reproduce under warm conditions than their colder full-sib counterparts. If these observations are related to methylation or other epigenetic effects, we may explain why progenies with a memory of a past time cold embryogenesis are more sensitive to short days than their full-sibs with a warmer embryonic history.

Sammendrag

Research indicate that the female parents of Norway spruce adjust these timing events in their progeny according to the prevailing temperature conditions during seed development. Reproduction in a cold environment advances bud-set and cold acclimation in the autumn and dehardening and flushing in spring, whereas a warm reproductive environment delays these progeny traits by an unknown non-Mendelian mechanism. We have performed identical crosses in combination with timed temperature treatments during shorter and longer periods from female meiosis, pollen tube growth, syngamy and embryogenesis, tested the progenies for bud-set and frost hardiness, and concluded that the effect of temperature most likely is a response to accumulated heat during embryogenesis and seed maturation. Our first attempt to look for a molecular mechanism has revealed that transcription of PHYO, PHYP and PHYN and the class IV chitinase PaChi4 (using RealTime PCR) all show higher transcription levels in progenies born under cold conditions than their full-sibs born under warmer conditions. This result is consistent with preliminary findings that methylation of cytosine in total DNA is higher in progenies reproduce under warm conditions than their colder full-sib counterparts. If these observations are related to methylation, we may explain why progenies with a memory of a past time cold embryogenesis are more sensitive to short days than their full-sibs with a warmer embryonic history.

2003

Til dokument

Sammendrag

For dere som snart skal handle juletre kan det være interessant å studere fargevariasjonene hos trærne. Ulike arter innen slektene furu, gran og edelgran har store fargeforskjeller, fra helt blått og sølvaktig grått til grønt eller gult bar. Ulike kunder setter pris på ulike farger, noe som kan være et viktig argument for å drive foredlingsarbeid for å rendyrke også denne egenskapen. I tillegg kommer andre kvalitetsegenskaper som vi krever at juletrær må ha, for eksempel fyldighet, symmetri, lite skader og god nålefasthet.