Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2011

Sammendrag

Fungi are the main degraders of organic matter and are associated symbiotically with over 80% of terrestrial plants (Smith and Read 1997). Thus, the extent of the mycelial network is an indicator of the decomposing or symbiotic activity. Although the importance of fungi in soil is undisputable, the determination of the extent of hyphal mats and the hyphal biomass is difficult to assess. Methods for estimating hyphae in soil are mostly based on the gridline intersect method originally developed to determine the root length or recently by measuring of the ergosterol content, fungal sterol found in the cell membranes....

Til dokument

Sammendrag

Skogarealet i Nordland er dekket av 62 % lauvtredominert skog, hvorav 46 prosentpoeng er bjørkeskog med mer enn 70 % bjørk. Grandominert skog utgjør 29 %, mens 8 % er furudominert skog og 2 % er hogstklasse 1 med uspesifisert treslag. Andelen lauvtredominert skog er dobbelt så høy som landsgjennomsnittet, og det er særlig andelen bjørkeskog som er høy.

Til dokument

Sammendrag

The Eurasian spruce bark beetle, Ips typographus, is one of the major forest insect pests in Europe, capable of mass-attacking and killing mature Norway spruce trees. The initiation and development of a new generation are strongly controlled by temperature and a warmer climate may affect the number of generations that is produced per year and hence the outbreak dynamics. Experimental knowledge regarding reproductive diapause adaptations is, however, too sparse for largescale assessments of future trends. We developed a model description of diapause induction, and used gridded observational temperature data to evaluate multiple combinations of day length and temperature thresholds to find the model parameterisation most coherent with I. typographus monitoring data from Scandinavia. The selected model parameterisation is supported by European literature data, though further experimental studies are required to analyse population specific adaptations and capacity for adjustments to changing climate conditions. Implementing the model description of reproductive diapause in a temperature driven model of bark beetle phenology (swarming activity and development from egg to mature bark beetle), enabled us to assess the length of the late summer swarming period that is a critical determinant of the risk of forest damage. By using regional climate model data we show that higher temperatures can result in increased frequency and length of late summer swarming events, producing a second generation in southern Scandinavia and a third generation in lowland parts of central Europe. Reproductive diapause will not prevent the occurrence of an additional generation per year, but the day length cues may restrict the length of the late summer swarming period.

Sammendrag

This study is a part of a larger project designed to find out the causes of top dieback symptoms in Norway spruce in SE Norway. Because sapwood tracheids constitute a water transport system while parenchyma serves as a reserve tissue (Sellin, 1991), the separation and quantification of the sapwood and heartwood may contribute to understanding of the healthy tree functioning. As the extent of sapwood is related to tree vitality, it reflects the tree growth, health and effect of environmental factors (Sandberg & Sterley, 2009). Therefore, the sapwood cross-sectional area is widely used as a biometric parameter indicating the tree vitality, although its estimation and evaluation is prone to scaling errors....

2010

Til dokument

Sammendrag

Terrestrial biosphere models are indispensable tools for analyzing the biosphere-atmosphere exchange of carbon and water. Evaluation of these models using site level observations scrutinizes our current understanding of biospheric responses to meteorological variables. Here we propose a novel model-data comparison strategy considering that CO2 and H2O exchanges fluctuate on a wide range of timescales. Decomposing simulated and observed time series into subsignals allows to quantify model performance as a function of frequency, and to localize model-data disagreement in time. This approach is illustrated using site level predictions from two models of different complexity, Organizing Carbon and Hydrology in Dynamic Ecosystems (ORCHIDEE) and Lund-Potsdam-Jena (LPJ), at four eddy covariance towers in different climates. Frequency-dependent errors reveal substantial model-data disagreement in seasonal-annual and high-frequency net CO2 fluxes. By localizing these errors in time we can trace these back, for example, to overestimations of seasonal-annual periodicities of ecosystem respiration during spring greenup and autumn in both models. In the same frequencies, systematic misrepresentations of CO2 uptake severely affect the performance of LPJ, which is a consequence of the parsimonious representation of phenology. ORCHIDEE shows pronounced model-data disagreements in the high-frequency fluctuations of evapotranspiration across the four sites. We highlight the advantages that our novel methodology offers for a rigorous model evaluation compared to classical model evaluation approaches. We propose that ongoing model development will benefit from considering model-data (dis)agreements in the time-frequency domain.

Til dokument

Sammendrag

The respiratory release of carbon dioxide (CO2) from the land surface is a major flux in the global carbon cycle, antipodal to photosynthetic CO2 uptake. Understanding the sensitivity of respiratory processes to temperature is central for quantifying the climate–carbon cycle feedback. We approximated the sensitivity of terrestrial ecosystem respiration to air temperature (Q10) across 60 FLUXNET sites with the use of a methodology that circumvents confounding effects. Contrary to previous findings, our results suggest that Q10 is independent of mean annual temperature, does not differ among biomes, and is confined to values around 1.4 ± 0.1. The strong relation between photosynthesis and respiration, by contrast, is highly variable among sites. The results may partly explain a less pronounced climate–carbon cycle feedback than suggested by current carbon cycle climate models.

Til dokument

Sammendrag

Information retrieval from spatiotemporal data cubes is key to earth system sciences. Respective analyses need to consider two fundamental issues: First, natural phenomena fluctuate on different time scales. Second, these characteristic temporal patterns induce multiple geographical gradients. Here we propose an integrated approach of subsignal extraction and dimensionality reduction to extract geographical gradients on multiple time scales. The approach is exemplified using global remote sensing estimates of photosynthetic activity. A wide range of partly well interpretable gradients is retrieved. For instance, well known climate-induced anomalies in FAPAR over Africa and South America during the last severe ENSO event are identified. Also, the precise geographical patterns of the annual–seasonal cycle and its phasing are isolated. Other features lead to new questions on the underlying environmental dynamics. Our method can provide benchmarks for comparisons of data cubes, model runs, and thus be used as a basis for sophisticated model performance evaluations.

Sammendrag

Skogøkosystemer binder karbon fra atmosfæren via fotosyntesen, men frigjør også karbon gjennom respirasjon. Nye beregninger viser hvor mye temperaturen påvirker denne balansen. Vi finner en nesten universell sammenheng mellom temperatur og utslipp fra økosystemer, og denne økningen i utslipp er mindre enn tidligere antatt. Det gjør klimamodellene mer pålitelige – og det kan være gode nyheter for klimaet vårt.

Til dokument

Sammendrag

Climate change and rising temperatures have been observed to be related to the increase of forest insect damage in the boreal zone. The common pine sawfly (Diprion pini L.) (Hymenoptera, Diprionidae) is regarded as a significant threat to boreal pine forests. Defoliation by D. pini can cause severe growth loss and tree mortality in Scots pine (Pinus sylvestris L.) (Pinaceae). In this study, logistic LASSO regression, Random Forest (RF) and Most Similar Neighbor method (MSN) were investigated for predicting the defoliation level of individual Scots pines using the features derived from airborne laser scanning (ALS) data and aerial images. Classification accuracies from 83.7% (kappa 0.67) to 88.1% (kappa 0.76) were obtained depending on the method. The most accurate result was produced using RF with a combination of data from the two sensors, while the accuracies when using ALS and image features separately were 80.7% and 87.4%, respectively. Evidently, the combination of ALS and aerial images in detecting needle losses is capable of providing satisfactory estimates for individual trees.