Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2016

Til dokument

Sammendrag

This study examined the P fertilization effects of 11 sewage sludges obtained from sewage treated with Al and/or Fe salts to remove P by a pot experiment with ryegrass (Lolium multiflorum) and a nutrient-deficient sand−peat mixture. Also it investigated whether fertilization effects could be predicted by chemical sludge characteristics and/or by P extraction. The mineral fertilizer equivalent (MFE) value varied significantly but was low for all sludges. MFE was best predicted by a negative correlation with ox-Al and ox-Fe in sludge, or by a positive correlation with P extracted with 2% citric acid. Ox-Al had a greater negative impact on MFE than ox-Fe, indicating that Fe salts are preferable as a coagulant when aiming to increase the plant availability of P in sludge. The results also indicate that sludge liming after chemical wastewater treatment with Al and/or Fe salts increases the P fertilization effect.

Sammendrag

Nonylphenols (NP) are a group of alkylphenols, formed upon degradation of nonylphenol ethoxylates such as nonylphenol monoethoxylate (NP1EO) or nonylphenol diethoxylate (NP2EO), which have been broadly used as non-ionic surfactants. Both NP and their ethoxylates are often present in the sewage, despite being banned and substituted by less toxic alcohol ethoxylates in many countries. There is a number of degradation studies of nonylphenol in the soil environment, but there is a lack of understanding on how plants and soil organisms such as earthworms can affect the degradation. In our study, we investigated the degradation of 4-nonylphenol (4-NP) in a mineral field soil in the presence of barley (Hordeum vulgare) and earthworms (Aporrectodea caliginosa). Soil was spiked with 4-NP at a concentration of 12.5 mg kg-1 d.w. soil. Results showed that the degradation of 4-NP in soil was rapid during the 28 days after spiking, with remaining concentration of 0.397 mg kg-1 d.w. soil on day 28. Degradation was much slower between days 28 and 120, with a remaining concentration of 0.214 mg kg-1 d.w. soil on day 120. No significant difference in the degradation of 4-NP in the presence of either plants or worms was observed, but sampling after 28 days of exposure revealed transfer of 4-NP to worms (worm tissue concentration = 0.79 μg g-1), which increased with time (1.66 μg g-1 after 120 d). The calculated transfer factor after 28 (TF28) and 120 days (TF120) was 0.07 and 0.13 respectively. No toxicity or accumulation in plants was observed at the concentration tested herein. Concentration of 4-NP in the rhizosphere was not statistically different from that in the bulk soil.

Til dokument

Sammendrag

Medieval Trondheim is located on the eastern part of Nidarneset, a small peninsula formed by the river plain at the mouth of the River Nid on the southern shore of Trondheimsfjord. The topographic conditions for medieval Trondheim differ from those of the other Norwegian medieval towns (notably Bergen, Oslo, and Tønsberg), and the protected, historic part of Trondheim contains anthropogenic sediments which lie entirely within an unsaturated environment. A large proportion of these sediments contain wood and other types of organic material. The thickness of the anthropogenic sediments varies greatly from more than 4 m to less than 0.5 m, and they overlie well-drained alluvial sands and gravels. The Directorate for Cultural Heritage (Riksantikvaren) and the Norwegian Institute for Cultural Heritage Research (NIKU) have different roles in the management of cultural heritage sites. However, they cooperate in developing sustainable management and a scientific approach to research, as well as finding practical solutions aimed at securing stable preservation conditions for anthropogenic sediments that are vulnerable and sensitive to environmental changes, both chemical and mechanical. In this paper we present results from environmental investigations conducted in 2007 and 2012 at a location in the central part of medieval Trondheim where an in situ preservation project has been established on the site of new construction work. The project is cross-interdisciplinary, combining archaeological retrieval methods with the sampling and analysis of soil chemical parameters and the monitoring of present basic parameters such as temperature, moisture and redox potential. The monitoring has been ongoing since the beginning of 2013 and will continue until 2017.

Til dokument

Sammendrag

Nano-scale zero-valent iron (nZVI) has been conceived for cost-efficient degradation of chlorinated pollutants in soil as an alternative to e.g permeable reactive barriers or excavation. Little is however known about its efficiency in degradation of the ubiquitous environmental pollutant DDT and its secondary effects on organisms. Here, two types of nZVI (type B made using precipitation with borohydride, and type T produced by gas phase reduction of iron oxides under H2) were compared for efficiency in degradation of DDT in water and in a historically (>45 years) contaminated soil (24 mg kg−1 DDT). Further, the ecotoxicity of soil and water was tested on plants (barley and flax), earthworms (Eisenia fetida), ostracods (Heterocypris incongruens), and bacteria (Escherichia coli). Both types of nZVI effectively degraded DDT in water, but showed lower degradation of aged DDT in soil. Both types of nZVI had negative impact on the tested organisms, with nZVI-T giving least adverse effects. Negative effects were mostly due to oxidation of nZVI, resulting in O2 consumption and excess Fe(II) in water and soil.