Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2011

Til dokument

Sammendrag

Novel lighting technology offers the possibility of improved arthropod integrated pest management (IPM) in artificially lighted crops. This review compiles the current knowledge on how greenhouse pest and beneficial arthropods are directly affected by light, with the focus on whiteflies. The effect of ultraviolet depletion on orientation and colour-coded phototaxis are to some extent studied and utilised for control of the flying adult stage of some pest species, but far less is known about the visual ecology of commercially used biological control agents and pollinators, and about how light affects arthropod biology in different life stages. Four approaches for utilisation of artificial light in IPM of whiteflies are suggested: (a) use of attractive visual stimuli incorporated into traps for monitoring and direct control, (b) use of visual stimuli that disrupt the host-detection process, (c) radiation with harmful or inhibitory wavelengths to kill or suppress pest populations and (d) use of time cues to manipulate daily rhythms and photoperiodic responses. Knowledge gaps are identified to design a road map for research on IPM in crops lighted with high-pressure sodium lamps, light-emitting diodes (LEDs) and photoselective films. LEDs are concluded to offer possibilities for behavioural manipulation of arthropods, but the extent of such possibilities depends in practice on which wavelength combinations are determined to be optimal for plant production. Furthermore, the direct effects of artificial lighting on IPM must be studied in the context of plant-mediated effects of artificial light on arthropods, as both types of manipulations are possible, particularly with LEDs.

Sammendrag

The effect of different light environments on trap catches of Frankliniella occidentalis and Trialeurodes vaporariorum was investigated in a commercial greenhouse rose production unit during late autumn. Two top light treatments were used: 1) High pressure sodium lamps (HPSLs) and 2) HPSLs and light emitting diodes (LEDs) with 20% blue and 80% red light. More thrips and fewer whiteflies were caught on yellow sticky traps, and more thrips were found in the flowers, in areas were LEDs were used in addition to HPSLs compared to areas where only HPSLs were used. No effect of the light treatments was found on the population level of Amblyseius swirskii, but a lower ratio of predatory mites to thrips was found on the plants where LEDs were used. The results suggest that using blue and red LEDs as interlighting, or otherwise supplementary to HPSLs, will change thrips and whitefly spatial distribution in the rose crop, and that natural enemy release rates probably need to be adjusted accordingly.

Sammendrag

The effect of different light environments on trap catches of Frankliniella occidentalis and Trialeurodes vaporariorum was investigated in a commercial greenhouse rose production unit during late autumn. Two top light treatments were used: 1) High pressure sodium lamps (HPSLs) and 2) HPSLs and light emitting diodes (LEDs) with 20% blue and 80% red light. More thrips and fewer whiteflies were caught on yellow sticky traps, and more thrips were found in the flowers, in areas were LEDs were used in addition to HPSLs compared to areas where only HPSLs were used. No effect of the light treatments was found on the population level of Amblyseius swirskii, but a lower ratio of predatory mites to thrips was found on the plants where LEDs were used. The results suggest that using blue and red LEDs as interlighting, or otherwise supplementary to HPSLs, will change thrips and whitefly spatial distribution in the rose crop, and that natural enemy release rates probably need to be adjusted accordingly.

Sammendrag

Temaer: •Import av plantemateriale til Norge •Hvilke arter rører mest på seg i internasjonal handel? •Utfordringer •Tiltak for å redusere risiko for introduksjon og etablering av nye skadegjørere

Sammendrag

  Topics: a) What is pesticide resistance?,  b) History of pesticide resistance c) Concequenses of pesticide resistance, d) Resistance risk factors, e) Pesticide Resistance Management, f) Regulation of the placement of pesticides on the market, g) National action plan, h)  International cooperation and coordination of pesticide resistance management.    

Sammendrag

Temaer: •å unngå resistens •Kjemiske midler på markedet – er det nok for å unngå resistens? •Resistensprofiler •Internasjonal handel og resistens •Presentasjon av prosjektet "Redusert risiko for plantevernmiddelresistens".

Sammendrag

Temaer: Effekt av, temperatur og fuktighet, dynamisk klimastyring og lysforhold på biologisk bekjempelse i veksthus.