Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2019

Sammendrag

Cultivated organic soils account for ∼7% of Norway’s agricultural land area, and they are estimated to be a significant source of greenhouse gas (GHG) emissions. The project ‘Climate smart management practices on Norwegian organic soils’ (MYR), commissioned by the Research Council of Norway (decision no. 281109), aims to evaluate GHG (e.g. carbon dioxide, methane and nitrous oxide) emissions and impacts on biomass productivity from three land use types (cultivated, abandoned and restored) on organic soils. At the cultivated sites, impacts of drainage depth and management intensity will be measured. We established experimental sites in Norway covering a broad range of climate and management regimes, which will produce observational data in high spatiotemporal resolution during 2019-2021. Using state-of-the-art modelling techniques, MYR aims to predict the potential GHG mitigation under different scenarios. Four models (BASGRA, DNDC, Coup and ECOSSE) will be further developed according to the soil properties, and then used independently in simulating biogeochemical processes and biomass dynamics in the different land uses. Robust parameterization schemes for each model will be based in the observational data from the project for both soil and crop combinations. Eventually, a multi-model ensemble prediction will be carried out to provide scenario analyses by 2030 and 2050. By integrating experimental results and modelling, the project aims at generating useful information for recommendations on environment-friendly use of Norwegian peatlands.

Sammendrag

Cultivated organic soils (7-8% of Norway’s agricultural land area) are economically important sources for forage production in some regions in Norway, but they are also ‘hot spots’ for greenhouse gas (GHG) emissions. The project ‘Climate smart management practices on Norwegian organic soils’ (MYR; funded by the Research Council of Norway, decision no. 281109) will evaluate how water table management and the intensity of other management practices (i.e. tillage and fertilization intensity) affects both GHG emissions and forage’s quality & production. The overall aim of MYR is to generate useful information for recommendations on climate-friendly management of Norwegian peatlands for both policy makers and farmers. For this project, we established two experimental sites on Norwegian peatlands for grass cultivation, of which one in Northern (subarctic, continental climate) and another in Southern (temperate, coastal climate) Norway. Both sites have a water table level (WTL) gradient ranging from low to high. In order to explore the effects of management practices, controlled trials with different fertilization strategies and tillage intensity will be conducted at these sites with WTL gradients considered. Meanwhile, GHG emissions (including carbon dioxide, methane and nitrous oxide), crop-related observations (e.g. phenology, production), and hydrological conditions (e.g. soil moisture, WTL dynamics) will be monitored with high spatiotemporal resolution along the WTL gradients during 2019-2021. Besides, MYR aims at predicting potential GHG mitigation under different scenarios by using state-of-the-art modelling techniques. Four models (BASGRA, Coup, DNDC and ECOSSE), with strengths in predicting grass growth, hydrological processes, soil nitrification-denitrification and carbon decomposition, respectively, will be further developed according to the soil properties. Then these models will be used independently to simulate biogeochemical and agroecological processes in our experimental fields. Robust parameterization schemes will be based on the observational data for both soil and crop combinations. Eventually, a multi-model ensemble prediction will be carried out to provide scenario analyses by 2030 and 2050. We will couple these process-based models with optimization algorithm to explore the potential reduction in GHG emissions with consideration of production sustenance, and upscale our assessment to regional level.

Sammendrag

På oppdrag fra vannområdet Bunnefjorden med Årungen- og Gjersjøvassdraget (PURA) er den empiriske modellen Agricat 2 brukt til å beregne potensialet for erosjon og fosforavrenning fra jordbruksarealer i 16 tiltaksområder, ved faktisk drift i 2018. Arealfordelingen av faktisk drift (vekst, jordarbeiding og miljøtiltak) i 2018 har framkommet av registerdata fra Landbruksdirektoratet og føringer/informasjon fra Follo Landbrukskontor, og er fordelt på de dyrka arealene etter bestemte rutiner i modellen. Arealfordelingsrutinen i modellen ga følgende utbredelse av kombinasjon vekst/jordarbeiding i vannområdet for 2018: 28 % stubb (jordarbeiding vår eller direktesåing), 20 % gras, 17 % vårkorn med høstpløying, 20 % høstkorn med høstpløying, 13 % høstharving til vår- og høstkorn, og 2 % poteter og grønnsaker. Arealfordelingen varierte mellom tiltaksområder. Eksisterende grasdekte buffersoner og fangdammer inngikk også i beregningene. Jord- og fosfortap i vannområdet PURA i 2018 ble beregnet til henholdsvis 3,8 kilotonn SS og 6,4 tonn TP. Resultatene for 2018 er ikke direkte sammenliknbare med resultatene fra foregående år pga. at ny beregningsmetode med nye erosjonsrisikokart som grunnlag er brukt for 2018. For individuelle tiltaksområder varierte jordtapet fra nær 0 til 2 kilotonn, og fosfortap fra nær 0 til 3 tonn. Forskjeller i drift bidro til å forklare forskjellene mellom tiltaksområder.

Sammendrag

I denne rapporten presenteres tall for jord- og fosfortap for alle nedbørfelter i vannområdene i Vestfold og Telemark fylke, beregnet med den empiriske modellen Agricat2, med nye erosjonsrisikokart (fra våren 2019) som grunnlag. Modellen er brukt for arealtilstanden (jordbruksdrift) i 2017, som avledet fra eStil-data (RMP), søknad om produksjonstilskudd og jordleieregisteret, samt også for standard driftsscenarier som ligger inne i modellen, og omfatter tiltakene redusert jordarbeiding, grasdekte buffersoner og redusert fosforstatus i jord, og kombinasjoner av disse tiltakene. Resultatene er gitt på forskjellige administrasjonsnivåer: (1) for hele Vestfold og Telemark fylke, (2) for 13 vannområder og (3) for 49 nedbørfelter innenfor vannområdene.

Sammendrag

Et stort datamateriale er samlet inn og det er gjennomført mange former for beregninger for store deler av vannregion Glomma med en standardisert metodikk, for å belyse vannkvalitet og tiltak mot fosforavrenning, med hovedfokus på jordbruksareal. Følgende vannområder er inkludert: Haldenvassdraget med Enningdalselva, Glomma sør for Øyeren, Vansjø-Hobølvassdraget (Morsa), Bunnefjorden med Årungen- og Gjersjøvassdraget (PURA), Indre Oslofjord vest, Leira-Nitelva, Øyeren, Hurdalsvassdraget/ Vorma (Huvo) og deler av vannområdene Mjøsa og Glomma...….

Til dokument

Sammendrag

Sustainable production of biofuels from lignocellulose feedstocks depends on cheap enzymes for degradation of such biomass. Plants offer a safe and cost‐effective production platform for biopharmaceuticals, vaccines and industrial enzymes boosting biomass conversion to biofuels. Production of intact and functional protein is a prerequisite for large‐scale protein production, and extensive host‐specific post‐translational modifications (PTMs) often affect the catalytic properties and stability of recombinant enzymes. Here we investigated the impact of plant PTMs on enzyme performance and stability of the major cellobiohydrolase TrCel7A from Trichoderma reesei, an industrially relevant enzyme. TrCel7A was produced in Nicotiana benthamiana using a vacuum‐based transient expression technology, and this recombinant enzyme (TrCel7Arec) was compared with the native fungal enzyme (TrCel7Anat) in terms of PTMs and catalytic activity on commercial and industrial substrates. We show that the N‐terminal glutamate of TrCel7Arec was correctly processed by N. benthamiana to a pyroglutamate, critical for protein structure, while the linker region of TrCel7Arec was vulnerable to proteolytic digestion during protein production due to the absence of O‐mannosylation in the plant host as compared with the native protein. In general, the purified full‐length TrCel7Arec had 25% lower catalytic activity than TrCel7Anat and impaired substrate‐binding properties, which can be attributed to larger N‐glycans and lack of O‐glycans in TrCel7Arec. All in all, our study reveals that the glycosylation machinery of N. benthamiana needs tailoring to optimize the production of efficient cellulases.

Til dokument

Sammendrag

Klimaet forventes å bli våtere, varmere og villere. Faren for økt avrenning, flom og jorderosjon vil øke, med påfølgende fare for høyere tilførsler av næringsstoff fra landbruket til vannforekomster. Det finnes mange undersøkelser og publikasjoner om overvannstiltak, og basert på denne informasjonen presenterer vi her en oversikt over tiltak som har til formål å holde vannet lengst mulig i nedbørfeltet, både i skogen og i typiske jordbruksområder, og som er egnet til bruk i Norge. Vi indikerer viktigste virkemåte av tiltakene: «forsink og fordrøy» (F) og/eller «fang og infiltrer»