Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2020

Sammendrag

Skogen i Norge har et årlig netto opptak i underkant av 30 mill. tonn CO2. Størrelsen på opptaket påvirkes av forvaltningen av skogarealene, både gjennom endringer i totalarealet (avskoging og påskoging), og forvaltningen av de eksisterende skogarealene. I denne rapporten presenteres en første vurdering av syv klimatiltak som ikke tidligere er utredet, en kunnskapsoppdatering av noen tidligere utredede klimatiltak, og en framskrivning av mulige effekter på netto CO2-opptak av ulike nivå på implementerte tiltak. Rapporten er skrevet på bestilling fra Landbruksdirektoratet og Miljødirektoratet, og det er direktoratene som har gjort utvalget av tiltak....

Sammendrag

Det årlige netto opptaket i skogen i Norge økte frem til 2009 (over 35 mill. tonn), og har etter det vist en avtakende trend. I 2018 var det et netto opptak på i underkant av 28 millioner tonn CO2- ekvivalenter. Størrelsen på opptaket påvirkes av forvaltningen av skogarealene, både gjennom endringer i totalarealet (avskoging og påskoging), og forvaltningen av de eksisterende skogarealene. I en første rapport til Klimakur 2030 – skrevet på oppdrag fra Miljødirektorat og Landbruksdirektoratet - ble det presentert en første vurdering av syv klimatiltak som ikke tidligere var utredet, samt en kunnskapsoppdatering for noen tidligere utredede klimatiltak. I denne rapporten presenteres ytterligere vurderinger av fire av disse tiltakene; ungskogpleie, grøfterensk, stubbebehandling mot råte og gjødsling med treaske. Rapporten er skrevet på bestilling fra Landbruks- og matdepartementet (LMD) og Klima- og miljødepartementet (KLD), og det er departementene som har gjort utvalget av tiltak som skulle vurderes videre...

2019

Til dokument

Sammendrag

Biochar has been shown to reduce nitrous oxide (N2O) emissions from soils, but the effect is highly variable across studies and the mechanisms are under debate. To improve our mechanistic understanding of biochar effects on N2O emission, we monitored kinetics of NO, N2O and N2 accumulation in anoxic slurries of a peat and a mineral soil, spiked with nitrate and amended with feedstock dried at 105 °C and biochar produced at 372, 416, 562 and 796 °C at five different doses. Both soils accumulated consistently less N2O and NO in the presence of high-temperature chars (BC562 and BC796), which stimulated reduction of denitrification intermediates to N2, particularly in the acid peat. This effect appeared to be strongly linked to the degree of biochar carbonisation as predicted by the H:C ratio of the char. In addition, biochar surface area and pH were identified as important factors, whereas ash content and CEC played a minor role. At low pyrolysis temperature, the biochar effect was soil dependent, suppressing N2O accumulation in the mineral soil, but enhancing it in the peat soil. This contrast was likely due to the labile carbon content of low temperature chars, which contributed to immobilise N in the mineral soil, but stimulated denitrification and N2O emission in the peat soil. We conclude that biochar with a high degree of carbonisation, high pH and high surface area is best suited to supress N2O emission from denitrification, while low temperature chars risk supporting incomplete denitrification.

Sammendrag

Biochar is a carbon-rich material that, due to its inherent resistance to decomposition, is primarily developed with the aim of sequestering carbon in soil. Despite the convincing benefits of biochar as a climate mitigation solution, it has not yet advanced much beyond the research stage, notably because its effect on yield are too modest. Therefore, there is a need for win-win biochar solutions benefiting both food production and climate mitigation. Such a solution is the development of biochar fertilizers, which capitalizes on the capacity of biochar to capture and release nutrients. This effect is largely attributed to the porous structure and large surface area of biochar, with surface charges and ash content also appearing to play a role. The nutrient-retaining capacity of biochar appears to vary among studies investigating different types of biochar exposed to different types of nutrients (mineral anions and cations, organic molecules) under different conditions. In the present study, we will report on a meta-analysis of published biochar properties that are associated with controlling the sorption of nutrients. As biochar properties largely depend on pyrolysis conditions and feedstock properties, this work contributes to the selective design of biochars for the purpose of improving nutrient use efficiency.

Sammendrag

At the Norwegian Institute of Bioeconomy Research (NIBIO, formerly Bioforsk), biochar has been a topic of research since 2009 through both laboratory and field studies. Initial results demonstrated that biochar produced from clean biomass is safe to use on agricultural soils, and that pyrolysis temperatures of ≥370 °C are necessary for producing biochar that is resistant to decomposition on a timescale of 100 years. Further work identified the chemical transformations that are responsible for biochar stability and contributed to finding the best indicator of this stability. Throughout the years, we have had close collaboration with industry and farmers in Norway, where now industrial networks are in action and there is financial support for the implementation of biochar technology. Despite the convincing benefits of biochar as a climate mitigation solution, it has only slowly advanced beyond the research stage, notably because its effect on yield are too modest. There is therefore a need for win-win biochar solutions benefiting both food production and climate mitigation. Such a solution is the development of biochar fertilizers, which capitalizes on the capacity of biochar to capture and release nutrients. As biochar properties largely depend on pyrolysis conditions and feedstock properties, our current work contributes to the selective design of biochars for the purpose of improving nutrient use efficiency.