Precision weed control

Weeds tend to occur in patches. Yet, weed control is usually conducted uniformly, potentially causing unnecessary use of herbicides or diesel. To avoid superfluous spraying and tillage operations, weeding measures should be adjusted to the actual weed distribution. Such site-specific weed management is possible if we combine sensor technology with agronomic knowledge into precision weed control.

presisjonsugras
Precision weed control is a process including three main steps: Step 1 - Monitoring or mapping weeds (and crop) within the field, Step 2 – Make use of a valid decision model which translates the outcome in Step 1 into sound site-specific weed control. Step 3 - The precision weeding itself (for example zero or normal herbicide dose). Photo: Therese W. Berge, Illustration: Roar Lågbu

Principally, precision weed control is nothing new. Traditional weeding by hand is a very a precise operation guided by two sensors and a decision model: our eyes and brain. Precision weed control in a modern context makes use of new technologies. Sensors - cameras and non-imaging sensors - , software giving meaning to the sensor readings and satellite-based positioning systems, are usually the minimum requirements. The new technologies can also include the weeding implement itself. Examples are direct injection sprayers, multi-tank sprayers, variable rate nozzles, robotic single drop spraying and new blades for root cutting.

Additionally, sound precision weeding requires valid decision models developed by experts. This is essential. Based on knowledge on the weeding tool, the weeds and crop in question, the decision model translates georeferenced sensor-based weed observations into valid site-specific weed control.

Reduced environmental impact of weed control in agriculture is the main motivation for precision weeding. - But perhaps costs to herbicides and diesel can be reduced as well? Furthermore, could fields under site-specific weed management benefit from increased diversity of weeds? - Could such fields perhaps be attractive for pest insects’ natural enemies?

Precision weed control can be seen as a topic within precision crop protection and precision agriculture. It can also be a tool in Integrated Pest Management, especially IPM principle No. 6.

Here you find links to some of our projects and publications on precision weed control. Our projects represent a rather wide range, from robotic application of single droplets of herbicides in seeded root vegetables to camera-based mapping of creeping thistle in cereals from the harvester.

Publications

To document

Abstract

© 2018. This is the authors’ accepted and refereed manuscript to the article. Locked until 7.9.2020 due to copyright restrictions. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/

Abstract

2 siders handout ifm "Grøna møten: Framtidsspaning för hållbart lantbruk i Norden" arrangert av Agroväst Livsmedel AB (Skara)på Naturbruksskolan Uddetorp, Skara, Sverige, 6. desember 2018

Abstract

Utvikling av skadeterskler basert på nyutviklet bildeanalyseprogram for presisjonssprøyting (flekksprøyting; sprøyting etter behov; stedsspesifikk sprøyting) mot frøugras i korn

Abstract

A major obstacle to patch spraying of broad-leaved weeds in cereals is a cost-effective method to assess within-field heterogeneity of the weed population. One method could be a camera mounted in front of the spraying vehicle, online image analysis, and field sprayer shifting between "on" and "off" as the predefined weed damage threshold level is reached. Because such a camera will capture a very limited area (

Abstract

Varying size of the management unit (MU, to be sprayed or not) were simulated for an envisaged implementation of image-based patch spraying based on mapped weed data. The simulations showed that the size of the MU had a great influence on the mapping errors (area above weed damage threshold, but unspared by big MU) and the spraying errors (area below threshold, but sprayed by the bigger MUs). If MU size is 10 m2, these errors would sum up to about 10%.

Abstract

Generelt er ugras hverken homogent eller tilfeldig fordelt i en åker, men klumpvis på en eller annen skale. Dette bør utnyttes til presisjonssprøyting (PS). En viktig hindring for gjennomføring av presisjonssprøyting mot frøugras i korn i dag er at gårdbrukeren ikke vet om ugrasmengden i området han kjører i, er over eller under skadeterskelen. En relativt enkel løsning er å montere et digital-kamera foran på traktoren, koble dette til PC med hurtige bildeanalyse-algoritmer og skadeterskler, og la PC"n styre åkersprøyta på/av automatisk. Ettersom dette kameraet vil fange opp et svært begrenset areal i forhold til hele sprøytebomsbredden, undersøkte vi hvor representativ informasjonen fra én telleramme på 0,25 m2 (simulert sprøytebredde). Tjue kornfelt a 192 tellerammer i 2001 og 2002 lagt i de viktigste korndistriktene i Norge ble analysert. Vi estimerte også hvor store areal som ikke ville blitt sprøyta ved PS, og dermed hvor mye herbicid korndyrkeren (og samfunnet) kunne spart med PS. Studien konkluderer med at én observasjon per bombredde, altså ett kamera, virker fornuftig, og at ca. 60 % av undersøkt kornareal var under skadeterskelen, og dermed unødvendig å sprøyte.

Abstract

Site-specific weed management (SSWM) of annuals will probably only be adopted by Norwegian cereal farmers if a cheap SSWM design becomes available. This could be one camera mounted in front of tractor taking images along a narrow path at the middle of sprayer boom, and nozzles automatically and collectively switched on as economic damage threshold is reached. We tested the suitability of this design ("SSWM, Low") by comparing spraying decisions ("spray"/"not spray") of this low resolution (about 16-m) with a high resolution (about 2-m) design ("SSWM, High"). Study concluded that one camera per spray boom (about 16-m wide) seems suitable because mean spraying error, as compared to "SSWM, High", was only 10%. Mean herbicide reductions were c. 60% for both SSWM designs.

Projects

ef-20080906-121830

Division of Biotechnology and Plant Health

SOLUTIONS: New solutions for potato canopy desiccation, control of weeds and runners in field strawberries & weed control in apple orchards


Efficient measures for weed control and similar challenges are vital to avoid crop loss in agriculture. National supply of food, feed and other agricultural products depends on each farmer’s success managing their fields and orchards. The recent loss of the herbicide diquat, and the potential ban on glyphosate, - both important tools for farmers -, raise a demand for new measures for vegetation control. Efficient alternatives to herbicides are also important tools in Integrated Pest Management (IPM). Norwegian growers need to document compliance to IPM since 2015 to ensure minimum hazards to health and environment from pesticide use.

Active Updated: 20.03.2025
End: apr 2026
Start: jan 2021
DSCN0914

Division of Biotechnology and Plant Health

AC/DC-weeds: Applying and Combining Disturbance and Competition for an agro-ecological management of creeping perennial weeds


Målsetningen med prosjektet AC/DC-weeds er å utvikle metoder for bærekraftig kontroll av flerårig vandrende ugras (rotugras) som kveke, åkerdylle og åkertistel i landbruket. Målet er å redusere behovet for intensiv jordarbeiding som pløying og å finne alternativer til bruk av ugrasmiddelet glyfosat. Nye metoder for bærekraftig kontroll av rotugras krever at en kombinerer flere typer av både forebyggende og direkte bekjempingstiltak. Kunnskap fra prosjektet vil formidles til viktige målgrupper som rådgivere, bønder og andre relevante mottakere. Rostock Universitet (Tyskland) ved Prof. Dr. Bärbel Gerowitt er prosjektkoordinator. NMBU ved Prof. Dr. Lars Olav Brandsæter administrerer aktiviteten i Norge.

Finished Updated: 31.10.2022
End: feb 2022
Start: mar 2019
IMG_20220516_103457

Division of Biotechnology and Plant Health

PresiHøstkorn: Redusert forbruk av ugrasmidler i korn - skadeterskler for presisjonssprøyting i høstkorn


Ugras er svært ofte flekkvis fordelt i åkeren. Korn er en konkurransesterk kultur og tåler en god del frøugras før det får negative konsekvenser. Det vil si at det eksisterer skadeterskler som angir hvor i åkeren ugrastiltak er nødvendig. Presisjonssprøyting (automatisk sensor-basert flekksprøyting) er å ta hensyn til den flekkvise utbredelsen av ugraset i åkeren. Dette vil redusere forbruket av ugrasmiddel betydelig i forhold til vanlig praksis (breisprøyting). På sikt forventes presisjonssprøyting å redusere forbruket av frøugrasmiddel med minst 50 %.

Finished Updated: 20.03.2025
End: mar 2025
Start: mar 2020