Marianne Stenrød

Head of Department/Head of Research

(+47) 482 97 607
marianne.stenrod@nibio.no

Place
Ås H7

Visiting address
Høgskoleveien 7, 1433 Ås

Biography

My research focus on effects of soil and climate conditions on degradation and transport of pesticides in the environment and impacts of pesticides on microbial acitivty in soil. I finished my PhD-studies on effects of pedoclimatic conditions on the degradation of glyphosate in soil at NMBU in 2005. I head several nationally funded research projects on these topics and am responsible for the pesticide monitoring within the Norwegian Agricultural Environmental Monitoring Program - JOVA. I am Head of Department for Pesticides and natural products chemistry at NIBIO since 2014.

Read more
To document

Abstract

Atrazine is a widely used triazine herbicide, which poses a serious threat to human health and aquatic ecosystem. A montmorillonite–biochar composite (MMT/BC) was prepared for atrazine remediation. Biochar samples were characterized by using scanning electron microscope (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectrometer (XPS). Structural and morphological analysis of raw biochar (BC) and MMT/BC showed that MMT particles have been successfully coated on the surface of biochar. Sorption experiments in aqueous solution indicated that the MMT/BC has higher removal capacity of atrazine compared to BC (about 3.2 times). The sorption of atrazine on the MMT/BC was primarily controlled by both physisorption and chemisorption mechanisms. The amendment of MMT/BC increased the sorption capacity of soils and delayed the degradation of atrazine. Findings from this work indicate that the MMT/BC composite can effectively improve the sorption capacity of atrazine in aquatic environment and farmland soil and reduce the environmental risk.

Abstract

Future weather patterns are expected to result in increased precipitation and temperature, in Northern Europe. These changes can potentially cause an increase in plant disease and insect pests which will alter agricultural practice amongst other things the used crop types and application patterns of pesticides. We use a Bayesian network to explore a probabilistic risk assessment approach to better account for variabilities and magnitudes of pesticide exposure to the aquatic ecosystem. As Bayesian networks link selected input and output variables from various models and other information sources, they can serve as meta-models. In this study, we are using a pesticide fate and transport models (e.g. WISPE) with specific environmental factors such as soil and site parameters together with chemical properties and climate scenarios that are linked to a representative Norwegian study area. The derived exposure of pesticide of the study area is integrated in the Bayesian network model to estimate the risk to the aquatic ecosystem also integrating an effect distribution derived from toxicity test. This Bayesian network model will allow to incorporate climate predictions into ecological risk assessment.

To document

Abstract

Difenoconazole is a widely used triazole fungicide that has been frequently detected in the environment, but comprehensive study about its environmental fate and toxicity of potential transformation products (TPs) is still lacking. Here, laboratory experiments were conducted to investigate the degradation kinetics, pathways, and toxicity of transformation products of difenoconazole. 12, 4 and 4 TPs generated by photolysis, hydrolysis and soil degradation were identified via UHPLC-QTOF/MS and the UNIFI software. Four intermediates TP295, TP295A, TP354A and TP387A reported for the first time were confirmed by purchase or synthesis of their standards, and they were further quantified using UHPLC-MS/MS in all tested samples. The main transformation reactions observed for difenoconazole were oxidation, dechlorination and hydroxylation in the environment. ECOSAR prediction and laboratory tests showed that the acute toxicities of four novel TPs on Brachydanio rerio, Daphnia magna and Selenastrum capricornutum are substantially lower than that of difenoconazole, while all the TPs except for TP277C were predicted chronically very toxic to fish, which may pose a potential threat to aquatic ecosystems. The results are important for elucidating the environmental fate of difenoconazole and assessing the environmental risks, and further provide guidance for scientific and reasonable use.

To document

Abstract

Conventional environmental risk assessment of chemicals is based on a calculated risk quotient, representing the ratio of exposure to effects of the chemical, in combination with assessment factors to account for uncertainty. Probabilistic risk assessment approaches can offer more transparency by using probability distributions for exposure and/or effects to account for variability and uncertainty. In this study, a probabilistic approach using Bayesian network modeling is explored as an alternative to traditional risk calculation. Bayesian networks can serve as meta-models that link information from several sources and offer a transparent way of incorporating the required characterization of uncertainty for environmental risk assessment. To this end, a Bayesian network has been developed and parameterized for the pesticides azoxystrobin, metribuzin, and imidacloprid. We illustrate the development from deterministic (traditional) risk calculation, via intermediate versions, to fully probabilistic risk characterization using azoxystrobin as an example. We also demonstrate the seasonal risk calculation for the three pesticides.

Abstract

Plantevernmidler er et viktig verktøy i dagens plantevernpraksis i jordbruket for å sikre gode avlinger. Miljørisikoen knyttet til det enkelte plantevernmiddel vurderes nøye før det godkjennes for bruk, men langvarig overvåking er nødvendig for å avdekke de faktiske miljøkonsentrasjoner og - effekter etter forskriftsmessig bruk av plantevernmidler. Sveriges nasjonale miljøovervåkingsprogram for plantevernmidler startet i 2002. Hovedmålet med programmet er å følge langtidstrender i påvirkningen av jordbrukets plantevernmiddelbruk på kvaliteten av overflate- og grunnvann, samt å bestemme miljøkonsentrasjonene av plantevernmidler i sediment, luft og nedbør. Formålet med denne evalueringen var å vurdere styrker og svakheter ved overvåkingsprogrammet, samt behov for endringer i den praktiske gjennomføringen, rapporteringsprosedyrer og målsetningen med programmet. Denne evalueringen vurderer også behovene hos de aktuelle sluttbrukergruppene for programmet som inkluderer svensk landbruks- og miljøforvaltning, rådgivningstjenesten i landbruket, bønder og bondeorganisasjoner mv.

Abstract

In Northern Europe, future changes in land-use and weather patterns are expected to result in increased precipitation and temperature this may cause an increase in plant disease and insect pests. In addition, predicted population increase will change the production demands and in turn alter agricultural practices such as crop types and with that the use pattern of pesticides. Considering these variabilities and magnitudes of pesticide exposure to the aquatic environment still needs to be accounted for better in current probabilistic risk assessment. In order to improve ecological risk assessment, this study explores an alternative approach to probabilistic risk assessment using a Bayesian Network, as these can serve as meta-models that link selected input and output variables from other models and information sources. The developed model integrates variability in both exposure and effects in the calculation of risk estimate. We focus on environmental risk of pesticides in two Norwegian case study region representatives of northern Europe. Using pesticide fate and transport models (e.g. WISPE), environmental factors such as soil and site parameters together with chemical properties and climate scenarios (current and predicted) are linked to the exposure of a pesticide in the selected study area. In the long term, the use of tools based on Bayesian Network models will allow for a more refined assessment and targeted management of ecological risks by industry and policy makers.

Abstract

The aquatic environment is constantly exposed to various chemicals caused by anthropogenic activities such as agricultural practices using plant protection products. Traditional Environmental Risk Assessment is based on calculated risk estimations usually representing a ratio of exposure to effects, in combination with assessment factors to account for uncertainty. In this study, we explore a more informative approach through probabilistic risk assessment, where probability distributions for exposure and effects are expressed and enable accounting for variability and uncertainty better. We focus on the risk assessment of various pesticides in a representative study area in the south east of Norway. Exposure data in this research was provided by the Norwegian Agricultural Environmental Monitoring Programme (JOVA)/ or predicted exposure concentration from a pesticide exposure model and effect data was derived from the NIVA Risk Assessment database (RAdb, www.niva.no/radb). A Bayesian network model is used as an alternative probabilistic approach to assess the risks of chemical. Bayesian Networks can serve as meta-models that link selected input and output variables from several separate project outputs and offer a transparent way of evaluating the required characterization of uncertainty for ERA. They can predict the probability of several risk levels, while facilitating the communication of estimates and uncertainties.

To document

Abstract

Preferential flow may become significant in partially frozen soils because infiltration can occur through large, initially air-filled pores surrounded by a soil matrix with limited infiltration capacity. The objectives of this study were to develop and evaluate a dual-permeability approach for simulating water flow and heat transport in macroporous soils undergoing freezing and thawing. This was achieved by introducing physically based equations for soil freezing and thawing into the dual-permeability model MACRO. Richards’ equation and the heat flow equation were loosely coupled using the generalized Clapeyron equation for the soil micropore domain. Freezing and thawing of macropore water is governed by a first-order equation for energy transfer between the micropore and macropore domains. We assumed that macropore water was unaffected by capillary forces, so that water in macropores freezes at 0°C. The performance of the model was evaluated for four test cases: (i) redistribution of water in the micropore domain during freezing, (ii) a comparison between the first-order energy transfer approach and the heat conduction equation, (iii) infiltration and water flow in frozen soil with an initially air-filled macropore domain, and (iv) thawing from the soil surface during constant-rate rainfall. Results show that the model behaves in accordance with the current understanding of water flow and heat transport in frozen macroporous soil. To improve modeling of water and heat flow in frozen soils, attention should now be focused on providing experimental data suitable for evaluating models that account for macropore flow.

Abstract

OBJECTIVES • Gain a better understanding of the fate of pesticides in the environment by also screening and detecting their metabolites • Predict and detect pesticide metabolites in soils using high resolution accurate mass (HRAM) tools; Thermo Q Exactive orbitrap and Compound DiscovererTM software. HIGHLIGHTS • We present in silico metabolism simulation to predict fungicide metabolites in soil • We present a screening method for 800 pesticides and metabolites in soil and food, exemplified with soil samples from strawberry field degradation studies (including fluopyram, boscalid and pyraclostrobin and others) • We address the lack of molecular formulas for known metabolites in current databases as an obstacle in establishing HRAM screening methods

To document See dataset

Abstract

Field and laboratory studies show increased leaching of pesticides through macropores in frozen soil. Fast macropore flow has been shown to reduce the influence of pesticide properties on leaching, but data on these processes are scarce. The objective of this study was to investigate the effect of soil freezing and thawing on transport of pesticides with a range of soil sorption coefficients (Kf). To do this we conducted a soil column study to quantify the transport of bromide and five pesticides (2-methyl-4-chlorophenoxyacetic acid, clomazone, boscalid, propiconazole, and diflufenican). Intact topsoil and subsoil columns from two agricultural soils (silt and loam) in southeastern Norway were used in this experiment, and pesticides were applied to the soil surface in all columns. Half the columns were then frozen (−3°C), and the other half were left unfrozen (4°C). Columns were subjected to repeated irrigation events where 25 mm of rainwater was applied during 5 h at each event. Irrigations were followed by 14-d periods of freezing or refrigeration. Percolate was collected and analyzed for pesticides and bromide. Pesticide leaching was up to five orders of magnitude larger from frozen than unfrozen columns. Early breakthrough (<<1 pore volume) of high concentrations was observed for pesticides in frozen columns, indicating that leaching was dominated by preferential flow. The rank order in pesticide leaching observed in this study corresponded to the rank order of mean Kf values for the pesticides, and the results suggest that sorption plays a role in determining leaching losses even in frozen soil.

To document

Abstract

Freezing and thawing have large effects on water flow in soils since ice may block a large part of the pore space and thereby prevent infiltration and flow through the soil. This, in turn, may have consequences for contaminant transport. For example, transport of solutes contained at or close to the soil surface can be rapidly transported through frozen soils in large pores that were air filled at the time of freezing. Accounting for freezing and thawing could potentially improve model predictions used for risk assessment of contaminant leaching. A few numerical models of water flow through soil accounts for freezing by coupling Richards’ equation and the heat flow equation using of the generalized Clapeyron equation, which relates the capillary pressure to temperature during phase change. However, these models are not applicable to macroporous soils. The objective of this study was to develop and evaluate a dual-permeability approach for simulating water flow in soil under freezing and thawing conditions. To achieve this we extended the widely used MACRO-model for water flow and solute transport in macroporous soil. Richards’ equation and the heat flow equation were loosely coupled using the Clapeyron equation for the soil micropore domain. In accordance with the original MACRO model, capillary forces were neglected for the macropore domain and conductive heat flow in the macropores was not accounted for. Freezing and thawing of macropore water, hence, were solely governed by heat exchange between the pore domains. This exchange included a first-order heat conduction term depending on the temperature difference between domains and the diffusion pathlength (a proxy variable related to the distance between macropores) and convective heat flow. As far as we know, there are no analytical solutions available for water flow during freezing and thawing and laboratory data is limited for evaluation of water flow through macropores. In order to evaluate the new model approach we therefore first compared simulation results of water flows during freezing for the micropore domain to existing literature data. Our model was shown to give similar results as other available models. We then compared the first-order conductive heat exchange during freezing to a full numerical solution of heat conduction. Finally, simulations were run for water flow through frozen soil with initially air-filled macropores for different boundary conditions. Simulation results were sensitive to parameters governing the heat exchange between pore domains for both test cases.

To document See dataset

Abstract

Limited knowledge and experimental data exist on pesticide leaching through partially frozen soil. The objective of this study was to better understand the complex processes of freezing and thawing and the effects these processes have on water flow and pesticide transport through soil. To achieve this we conducted a soil column irrigation experiment to quantify the transport of a non-reactive tracer and the herbicide MCPA in partially frozen soil. In total 40 intact topsoil and subsoil columns from two agricultural fields with contrasting soil types (silt and loam) in South-East Norway were used in this experiment. MCPA and bromide were applied on top of all columns. Half the columns were then frozen at −3 °C while the other half of the columns were stored at +4 °C. Columns were then subjected to repeated irrigation events at a rate of 5 mm artificial rainwater for 5 h at each event. Each irrigation was followed by 14-day periods of freezing or refrigeration. Percolate was collected and analysed for MCPA and bromide. The results show that nearly 100% more MCPA leached from frozen than unfrozen topsoil columns of Hov silt and Kroer loam soils. Leaching patterns of bromide and MCPA were very similar in frozen columns with high concentrations and clear peaks early in the irrigation process, and with lower concentrations leaching at later stages. Hardly any MCPA leached from unfrozen topsoil columns (0.4–0.5% of applied amount) and concentrations were very low. Bromide showed a different flow pattern indicating a more uniform advective-dispersive transport process in the unfrozen columns with higher con- centrations leaching but without clear concentration peaks. This study documents that pesticides can be pre- ferentially transported through soil macropores at relatively high concentrations in partially frozen soil. These findings indicate, that monitoring programs should include sampling during snow melt or early spring in areas were soil frost is common as this period could imply exposure peaks in groundwater or surface water.

To document

Abstract

This project evaluated whether the principles of combined toxicity assessment (CTA) and cumulative risk assessment (CRA) can be used to predict the toxicity of ecologically-relevant mixtures of plant protection products (PPPs) in surface waters receiving run-off from Norwegian agricultural areas. A combination of testing solid phase extracts (SPE), whole surface water and a synthetic mixture in an algal bioassay and predicting combined toxicity using CTA models were conducted on selected samples from the Heia catchment (Råde, Norway). The results demonstrated that designing and testing synthetic mixtures on the basis of measured concentrations of PPPs was the best method for the accurate determination of combined toxicity due to confounding factors introduced by whole water and SPE testing. Combined toxicity models based on Concentration Addition (CA) successfully predicted the toxicity of the complex synthetic mixture and verified that a mixture of PPPs acted in an additive manner. Tiered assessment of the cumulative risk of active PPP substances and PPP formulations proposed by the European Food Safety Authority (EFSA) were considered applicable also for the CRA of complex environmental mixtures and could potentially aid the identification of relevant mixtures, risk drivers and susceptible species as input to the assessment and approval of PPPs.

To document

Abstract

This project was performed to improve the environmental cumulative risk assessment (CRA) of mixtures of plant protection products detected by the Norwegian Agricultural Environmental Monitoring Programme (JOVA) in Norwegian surface waters. Existing ecotoxicity data were compiled and reduced the assessment uncertainty compared to previous risk assessments. Ecotoxicity tests verified that the cumulative toxicity of ecologically-relevant environmental mixtures was fairly well predicted for algae, daphnia and aquatic plants. The results from the ecotoxicity tests were used to evaluate the assessment factor used in the risk assessment, and the improved data used in the CRA of plant protection products in the JOVA monitoring performed in 2013. Three of the six investigated sites had risk quotients indicative of environmental risk. Mitigation measures based on the identification of the main risk drivers were discussed and include consideration of no-spray zones, grassed buffer strips, reduced doses and patch spraying, and pesticide risk maps.

Abstract

In Europe there is an on-going process on implementing regulations aimed at reducing pollution from agricultural production systems, i.e. the Water Framework Directive and the Framework Directive for Sustainable Use of Pesticides. At the same time, there is an increasing focus on food security possibly leading to continued intensification of agricultural production with increased use of external inputs, such as pesticides and fertilizers. Application of sustainable production systems can only be achieved if they balance conflicting environmental and economic effects. In Norway, cereal production is of large importance for food security and reduction of soil and phosphorus losses, as well as pesticide use and leaching/runoff in the cereal production are of special concern. Therefore, we need to determine the most sustainable and effective strategies to reduce loss of top soil, phosphorus and pesticides while maintaining cereal yields. A three-year research project, STRAPP, is addressing these concerns. A catchment area dominated by cereal production is our common research arena within STRAPP. Since 1992 a database (JOVA) with data for soil erosion, nutrient and pesticide leaching/runoff (i.e. concentrations in stream water), yield, and agricultural management practices (fertilization, use of pesticides, soil tillage and rotations) has been established for this catchment allowing us to compare a unique diversity in cropping strategies in a defined location. An important part of STRAPP focuses on developing ‘best plant protection strategies’ for cereal fields in the study area, based on field inventories (manual and sensor based) of weeds and common diseases, available forecast systems, and pesticide leaching risk maps. The results of field studies during the growing seasons of 2013 and 2014 will be presented, with a focus on possible integrated pest management (IPM) strategies for weeds and fungal diseases in cereal production. We will also present the project concept and methods for coupling optimized plant protection strategies to (i) modelling of phosphorus and pesticide leaching/runoff, as well as soil loss, and (ii) farm-economic impacts and adaptations. Further, methods for balancing the conflicting environmental and economic effects of the above practices, and the evaluation of instruments for increased adoption of desirable management practices will be outlined.

Abstract

Effective pest management is a prerequisite to maintain yields of sufficient quality and quantitywithin agriculture. In conventional agriculture this involves the use of pesticides, and current legislation focus on the need for increased awareness of the environmental consequences and a sustainable use. The Norwegian Agricultural Environmental Monitoring Program (JOVA) aims at documenting environmental consequences of both the current agricultural practices and changes with time,due to changes imposed by policy, laws and regulations, climatic factors a.o., and include collection of pesticide use data within selected agricultural catchments. The catchment scale data on plant protection practices from the JOVA-program indicate reduced use of pesticides in the catchments dominated by potatoes and vegetables, and meadows and pasture, while there are no indications of reduced use of pesticides in cereal production. There have been marked shifts in the pesticide use within the catchments during the monitoring period due to changes in management practices and the continuous change in the range of pesticides available for control of a certain pest. The monitoring of pesticide residues in surface and ground waters in the JOVA-catchments depend on analyses that do not include all important pesticides in use. Hence, the environmental challenges connected to the current pesticide use in Norwegian agriculture are not fully explored. This is particularly of concern regarding the widespread use of glyphosate and sulfonylurea herbicides for weed control, as well as the rapidly increasing use of prothioconazole to control Fusarium spp. in cereal. The long-term, farm scale pesticide use data from the JOVA-program is a unique source ofinformation to establish the necessary knowledge to design measures and instruments to reduce pesticide pollution from agriculture, and should be utilized in the future use of pesticide risk indicator models that is recommended through the Framework Directive for Sustainable Use of Pesticides.

Abstract

Chemical pesticides should disappear rapidly after achieving its intended effect, leaving the environment free from harmful residual amounts. Due to the complex interactions between the processes affecting the fate of pesticides and various environmental factors, pesticides and metabolites might persist and be transported in the environment. The Norwegian Agricultural Environmental Monitoring Program (JOVA) aims at documenting the environmental consequences of current agricultural practices and changes in these practices with time, and includes monitoring of possible occurrence ofpesticide residues in streams and rivers in selected agricultural catchments. Sixteenyears of pesticide monitoring within the JOVA-catchments shows considerablevariation in retrieval of pesticide residues in water with time, and demonstrate the need for long-term time series as a reference to enable evaluation of single-year results. On average two pesticides are detected in each sample analysed, but there are large variations between the different catchments. The overall trends emerging from the monitoring data for the period 1995-2010 include (1) reduced environmental load from pesticides in potato and vegetable production, (2) increased use and detections of fungicides in cereal, (3) low concentrations of pesticides detected in areas with meadows and pasture, and (4) detections of pesticides in large rivers. The validity ofthese results is limited by the restrictions in the pesticides analysed compared to the pesticides in use, as well as other methodological and analytical restrictions, and the problems with pesticides in surface and ground waters of Norwegian agricultural catchments are not yet fully explored. The implementation of new European regulations within the fields of water management, in general, and sustainable use of pesticides, in particular, demands continuous monitoring to document their effects. To fulfill theserequirements the pesticide monitoring in JOVA can be expected to have continuedand increased value in the years to come.

Abstract

Current risk assessment procedures for contaminated land and for pesticides often fail to properly characterize the risk of chemicals for environment or human health and provide only a rough estimate of the potential risk of chemicals. Chemicals often occur in mixtures in the environment, while regulatory agencies often use a chemical-by-chemical approach, focusing on a single media, a single source, and a single toxic endpoint. Further, the importance of soil microbes and their activity in the functioning of soils impose a need to include microorganisms in soil quality assessments including terrestrial ecotoxicological studies. Numerous papers have been published on the effects of different contaminants on soil microbes, establishing changes in soil microbial diversity as an indicator of soil pollution. However, only a limited number of molecular studies focus on changes in fungal species when investigating soil microbial diversity. The main objective of the study presented here, is to assess the applicability of changes in soil microbial diversity and activity levels as indicators of ecologically relevant effects of chemicals contamination. We will achieve this through studies of effects of the fungicide picoxystrobin and the chemical 4-n-nonylphenol on the microbial biodiversity in a Norwegian sandy loam, with focus both on prokaryotes and the fungal species. Laboratory incubation experiments at 20°C with soil samples treated with the single chemicals or mixtures, with continuous monitoring of respiration activity as well as occasional destructive sampling for extraction of soil DNA, RNA, and chemical residues, was performed through a 70 d period. Results from amplification of soil bacterial and fungal DNA followed by T-RFLP (terminal restriction fragment length) analyses to assess chemicals effects on soil microbial diversity, indicate significant effects of the studied chemicals on soil microbial community structure. To identify specific bacterial or fungal groups that are affected, an assessment of the effects of the chemicals on the soil microbial metagenome by high throughput shot-gun sequencing (454 sequencing) is in progress This work is part of the research project ‘Bioavailability and biological effects of chemicals - Novel tools in risk assessment of mixtures in agricultural and contaminated soils’ funded by the Norwegian research council.

Abstract

Introduction: Current risk assessment procedures for contaminated land and for pesticides often fail to properly characterize the risk of chemicals for environment or human health and provide only a rough estimate of the potential risk of chemicals. Chemicals often occur in mixtures in the environment, while regulatory agencies often use a chemical-by-chemical approach, focusing on a single media, a single source, and a single toxic endpoint. Current concepts to estimate biological effects of chemical mixtures mainly rely on data available for single chemicals, disregarding interaction between chemicals in soils. The importance of soil microbes and their activity in the functioning of soils impose a need to include microorganisms in soil quality assessments (Winding et al., 2005) including terrestrial ecotoxicological studies. Numerous papers have been published on the effects of different contaminants on soil microbes, establishing changes in soil microbial diversity as an indicator of soil pollution, but only a limited number of molecular studies investigating fungal diversity in the environment have been performed. The main objective of the study presented here, is to assess the applicability of changes in soil microbial diversity and activity levels as indicators of ecologically relevant effects of chemicals contamination. We have studied the effects of the fungicide picoxystrobin and the chemical 4-n-nonylphenol, on the microbial biodiversity in a Norwegian sandy loam with focus both on prokaryotes and the fungal species. 4-n-nonylphenol is a chemical occurring in high amounts in sewage sludge, hence, these chemicals may occur as single chemicals as well as in mixtures in soils. This work is part of the research project ‘Bioavailability and biological effects of chemicals - Novel tools in risk assessment of mixtures in agricultural and contaminated soils" funded by the Norwegian research council.Methods: Soil samples were treated with the single chemicals or mixtures and incubated at 20°C. Continuous monitoring of respiration activity as well as occasional destructive sampling for extraction of soil DNA, RNA, and chemical residues was performed through a 70 d period. Amplification of soil bacterial and fungal DNA was followed by T-RFLP analysis to assess chemicals effects on soil microbial diversity. Further work will include analyses of extracted soil RNA to assess chemicals effects on important soil functions (e.g. nitrogen cycling, decomposition of organic matter) and an assessment of chemicals effects on the genetic diversity of the soil by high throughput shot-gun sequencing. Finally the results will be evaluated to assess the suitability of any specific group, species or activity/function as biomarker for the selected chemicals (and possibly their group of chemicals).Results and conclusions: A project outline and preliminary results from the project will be presented at the conference.ReferencesWinding A, Hund-Rinke K, Rutgers M (2005). The use of microorganisms in ecological soil classification and assessment concepts. Ecotoxicology and Environmental Safety 62: 230-248.