Publications
NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.
2018
Abstract
No abstract has been registered
Abstract
No abstract has been registered
Abstract
Background: Generalized height-diameter curves based on a re-parameterized version of the Korf function for Norway spruce (Picea abies (L.) Karst.), Scots pine (Pinus sylvestris L.) and silver birch (Betula pendula Roth) in Norway are presented. The Norwegian National Forest Inventory (NFI) is used as data base for estimating the model parameters. The derived models are developed to enable spatially explicit and site sensitive tree height imputation in forest inventories as well as future tree height predictions in growth and yield scenario simulations. Methods: Generalized additive mixed models (gamm) are employed to detect and quantify potentially non-linear effects of predictor variables. In doing so the quadratic mean diameter serves as longitudinal covariate since stand age, as measured in the NFI, shows only a weak correlation with a stands developmental status in Norwegian forests. Additionally the models can be locally calibrated by predicting random effects if measured height-diameter pairs are available. Based on the model selection of non-constraint models, shape constraint additive models (scam) were fit to incorporate expert knowledge and intrinsic relationships by enforcing certain effect patterns like monotonicity. Results: Model comparisons demonstrate that the shape constraints lead to only marginal differences in statistical characteristics but ensure reasonable model predictions. Under constant constraints the developed models predict increasing tree heights with decreasing altitude, increasing soil depth and increasing competition pressure of a tree. A two-dimensional spatially structured effect of UTM-coordinates accounts for the potential effects of large scale spatially correlated covariates, which were not at our disposal. The main result of modelling the spatially structured effect is lower tree height prediction for coastal sites and with increasing latitude. The quadratic mean diameter affects both the level and the slope of the height-diameter curve and both effects are positive. Conclusions: In this investigation it is assumed that model effects in additive modelling of height-diameter curves which are unfeasible and too wiggly from an expert point of view are a result of quantitatively or qualitatively limited data bases. However, this problem can be regarded not to be specific to our investigation but more general since growth and yield data that are balanced over the whole data range with respect to all combinations of predictor variables are exceptional cases. Hence, scam may provide methodological improvements in several applications by combining the flexibility of additive models with expert knowledge.
Abstract
Question In recent decades, high‐latitude climate has shown regionally variable trends towards warmer and moister conditions. These changes have been predicted to cause afforestation or shrubification of open tundra, increases of warmth‐demanding southern species and plant groups favoured by increased moisture, and decline of species and habitats that are dependent on snow cover. In this study, we explore temporal changes in northern tundra upland plant communities along regional gradients and in local habitats. We ask how vegetation changes are linked with long‐term trends in regional climate and grazing pressure. Location Northern Europe. Methods In 2013–2014, we resurveyed a total of 108 vegetation plots on wind‐exposed and snow‐protected tundra habitats in three subareas along a bioclimatic gradient from the northern boreal to the arctic zone. Vegetation plots were originally sampled in 1964–1967. We related observed vegetation changes to changes in temperature, precipitation and grazing pressure, which all showed regionally variable increases over the study period. Results We found a significant increase of the evergreen dwarf shrub Empetrum nigrum subsp. hermaphroditum in snow‐protected communities and a prominent decrease of lichens throughout the study area. No evidence for extensive tree or larger shrub (Betula spp., Salix spp. or Juniperus communis) encroachment despite climatic warming trends was found. Among studied communities, most pronounced changes in vegetation were observed in snow‐protected boreal heaths on small isolated uplands, where community composition showed low resemblance to the original composition described decades ago. Changes in plant communities correlated with changes in summer and winter temperatures, summer precipitation and reindeer grazing pressure, yet correlations varied depending on region and habitat. Conclusions Northern tundra uplands vary in their resistance to on‐going climate change and reindeer grazing. Isolated treeless heaths of boreal forest–tundra ecotone appear least resistant to climate change and have already shifted towards new community states.
Abstract
The long history of human land use have had a strong influence on ecosystems and landscapes in the boreal forest region of Northern Europe and created semi-natural habitats of high conservation value. In this study, we quantify land-cover change and loss of semi-natural grassland in an agricultural landscape (6.2 km2 ) in the boreal region of Norway from 1960 to 2015, and document a 49.1% loss of area that was seminatural grassland in 1960. The remaining semi-natural grasslands became smaller and the connectivity between them decreased. Intensification and abandonment of agricultural land use were of approximately equal importance for the loss of semi-natural grassland although the relative contribution of these processes depended on the topography and distance to farmsteads. The study provides an example of how change in land cover can be estimated and key drivers identified on a scale that is relevant for implementation of management and conservation measures.
Authors
Liv Østrem Torben Asp Marc Ghesquière Yoshinori Sanada Odd Arne RognliAbstract
Norwegian cultivars and breeding materials of perennial ryegrass and Festulolium were planted at three locations in Denmark, France and Japan for test-ing of resistance against leaf diseases. In general, all plant materials were susceptible to crown rust. The highest incidence of rust attack occurred at the French site, which due to its climatic conditions might be the most suitable testing site for future scoring of similar plant material. Entries based on introgressed genetic materials from UK were most resistant towards crown rust. Crown rust resistance needs increased focus as a breeding objective in the Nordic region due to climate changes, which will most likely lead to increased infection of leaf diseases.
Abstract
A large proportion of global agricultural soils contain suboptimal available phosphorus (P) for the growth of many plant species. Boron (B) plays important roles in plant growth and development, but limited research has been conducted to study B uptake under low P availability. This study comprised a hydroponic and a mini-rhizobox experiment with canola (Brassica napus L.), potato (Solanum tuberosum L.) and wheat (Triticum aestivum L.) under P sufficient and deficient conditions. Boron concentrations, rhizosphere soil pH, and gene expression of BnBOR1 in canola were determined. Shoot B concentrations were found significantly increased (11–149%) by low P availability in potato and canola but not in wheat. Reverse transcription polymerase chain reaction (RT-PCR) indicated that BnBOR1;2a, BnBOR1;2c, and BnBOR1;3c were up-regulated after seven days of low P treatment in canola roots. Our results indicate that plant shoot B concentration was dramatically influenced by P availability, and dicots and monocots showed a contrasting B concentration response to low P availability.
Authors
Simo MadunaAbstract
No abstract has been registered
Authors
Simo MadunaAbstract
No abstract has been registered
Abstract
Modified atmosphere packaging (MAP) may inhibit undesirable quality changes of fruit and vegetables. The aim of this experiment was to evaluate the effect of MAP on selected quality parameters for sweet cherries (Prunus avium L.) stored at simulated distribution chain temperatures. ‘Lapins’ sweet cherries with maturity grade 4-5 and 6-7 were packaged in macroperforated polyethylene “carry bags” (control) and in trays wrapped in a laser perforated film giving passive modified atmosphere (MAP). After packaging, the cherries were stored at 4°C for 5 days and thereafter for 3 days at 4°C (chill) or 20°C (retail) simulating storage at chill or room temperature in the grocery stores. Headspace gas atmosphere in the MA packages, fruit quality, weight loss and amount of fungal fruit decay and other decays were recorded after 1, 5 and 8 days of storage. The gas atmosphere in MA packages was approximately 18% O2 and 4% CO2 at 4°C and between 6-9% O2 and 12-14% CO2 at 20°C. The weight loss was negligible in the MA packages at both storage conditions, whereas the cherries in carry bags showed a weight loss from 1 to 4%. The stem colour was significantly browner in the carry bags compared to the MA packages after 8 days of retail storage. Fungal decay was below 0.5% for both maturity grades stored at chill conditions for 8 days. At retail conditions, 4 and 6% decay was detected for maturity grade 4-5 in MA-packages and carry bags, respectively. For maturity grade 6- 7, the MA-packages had 9% decay and the carry bags 7%. The overall picture was that MA packaging for sweet cherries better maintained the fruit quality than the carry bags during the storage period of 8 days at two simulated retail conditions.