Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2024

Sammendrag

Arealbrukssektoren (engelsk: Land Use, Land-Use Change and Forestry, LULUCF) omfatter arealbruk og arealbruksendringer, med tilhørende utslipp og opptak av CO2, CH4 og N2O, og er en del av det nasjonale klimagassregnskapet under FNs klimakonvensjon. Framskrivningene presentert her er basert på data og metodikk fra Norges siste rapportering til FNs klimakonvensjon, innsendt 15. mars 2024 (Miljødirektoratet mfl. 2024). Perioden 2009–2022 har vært lagt til grunn som referanseperiode, og framskrivning av arealutvikling og utslipp er i all hovedsak basert på rapporterte data for denne tidsperioden. Utviklingen i gjenværende skog er framskrevet ved hjelp av simuleringsverktøyet SiTree og jordmodellen Yasso07. Klimaendringer under klimascenariet i RCP 4.5 er lagt til grunn. Framskrivingen er framstilt både i henhold til FNs klimakonvensjon sitt regelverk for klimagassregnskapet (alle arealbrukskategorier og kilder) og basert på EUs regelverk under LULUCF-forordningen (2018/841) (European Union 2018).

Til dokument

Sammendrag

Background Neck pain remains a persistent challenge in modern society and is frequently encountered across a wide range of occupations, particularly those involving repetitive and monotonous tasks. It might be expected that patterns of trapezius muscle activity at work, characterized by few breaks and prolonged periods of sustained muscle activity, are linked to neck pain. However, previous cross-sectional studies have generally failed to establish a definitive association. While some longitudinal studies have suggested that extended periods of heightened muscle activity could be a risk factor for neck pain, these findings often relied on limited participant numbers or specific professional groups. This study aimed to investigate the relationship between trapezius muscle activity and neck pain by pooling data from seven Scandinavian research institutes encompassing a diverse range of occupational backgrounds. Methods Electromyographic (EMG) data for the upper trapezius muscle, collected during working hours, were coupled with questionnaire responses pertaining to neck pain, individual characteristics, and potential confounding variables for a total of 731 subjects. Additionally, longitudinal data from 258 subjects were available. The various EMG datasets were consolidated into a standardized format, and efforts were made to harmonize inquiries about neck pain. Regression analyses, adjusting for sex and height, were conducted to explore the associations between muscle activity variables and neck pain. An exposure index was devised to quantify the cumulative neck load experienced during working hours and to differentiate between various occupational categories. Results The cross-sectional data displayed a distinct pattern characterized by positive associations for brief periods of sustained muscle activity (SUMA) and negative associations for prolonged SUMA-periods and neck pain. The longitudinal data exhibited a contrasting trend, although it was not as pronounced as the cross-sectional findings. When employing the exposure index, notable differences in cumulative muscle load emerged among occupational groups, and positive associations with longitudinal neck pain were identified. Discussion The results suggest that individuals with neck pain experience higher cumulative workloads and extended periods of muscle activity over the long term. In the short term, they appear to compensate by taking frequent short breaks, resulting in a lower cumulative workload. Regardless of their occupation, it is crucial to distribute work breaks throughout the workday to ensure that the cumulative load remains manageable.

Sammendrag

Deadwood represents a dynamic carbon pool in forest ecosystems where microbial decomposition causes fluxes of CO2 to the atmosphere through respiration and organic carbon to the soil through leakage and fragmentation. This study characterises different stages of deadwood of Norway spruce (Picea abies). 35 Norway spruce trees were sampled and categorized on a 0–5 decay scale. For the 14 trees in classes 0–3, two stem discs were collected from two heights. For the 21 trees in classes 4 and 5, a single sample per tree was taken, because decay was relatively uniform throughout the stem. The relative amount of hemicellulose and cellulose declined moderately from decay class 1 to 3 and substantially from decay class 3 to class 4 but small amounts were still present in decay class 5. The relative lignin proportion increased substantially from decay class 3 to 4 and dominated in decay class 5. Relative carbon content increased from 50 to 56% during the decomposition process due to the increasing accumulation of lignin residuals being a typical signature of brown rot decay. A laboratory experiment including three species of brown rot fungi verified decomposition close to 70% of Norway spruce biomass and resulted in 55% carbon content. This was similar to the carbon content in decay class 4 and 5. A novel approach is presented to quantify the carbon flux from deadwood to the soil. First, we calculated the residual proportion of carbon in decayed wood compared to the initial carbon content of live trees. Subsequently, we extended the calculation to determine the amount of remaining carbon from non-decayed wood that was transferred to the soil during each decay class. The approach showed that Norway spruce wood decomposition under field conditions transfers at least 39–47% of the initial wood carbon to the soil carbon pool, depending on soil type. This strengthens the previously under-communicated fact that the carbon flux from deadwood to soil is higher from brown rot decomposition in boreal forests than the corresponding carbon flux in temperate and tropical forests where deadwood is more influenced by white rot fungi.