Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2024

Til dokument

Sammendrag

Neck pain remains a persistent challenge in modern society and is frequently encountered across a wide range of occupations, particularly those involving repetitive and monotonous tasks. It might be expected that patterns of trapezius muscle activity at work, characterized by few breaks and prolonged periods of sustained muscle activity, are linked to neck pain. However, previous cross-sectional studies have generally failed to establish a definitive association. While some longitudinal studies have suggested that extended periods of heightened muscle activity could be a risk factor for neck pain, these findings often relied on limited participant numbers or specific professional groups. This study aimed to investigate the relationship between trapezius muscle activity and neck pain by pooling data from seven Scandinavian research institutes encompassing a diverse range of occupational backgrounds. Methods Electromyographic (EMG) data for the upper trapezius muscle, collected during working hours, were coupled with questionnaire responses pertaining to neck pain, individual characteristics, and potential confounding variables for a total of 731 subjects. Additionally, longitudinal data from 258 subjects were available. The various EMG datasets were consolidated into a standardized format, and efforts were made to harmonize inquiries about neck pain. Regression analyses, adjusting for sex and height, were conducted to explore the associations between muscle activity variables and neck pain. An exposure index was devised to quantify the cumulative neck load experienced during working hours and to differentiate between various occupational categories. Results The cross-sectional data displayed a distinct pattern characterized by positive associations for brief periods of sustained muscle activity (SUMA) and negative associations for prolonged SUMA-periods and neck pain. The longitudinal data exhibited a contrasting trend, although it was not as pronounced as the cross-sectional findings. When employing the exposure index, notable differences in cumulative muscle load emerged among occupational groups, and positive associations with longitudinal neck pain were identified. Discussion The results suggest that individuals with neck pain experience higher cumulative workloads and extended periods of muscle activity over the long term. In the short term, they appear to compensate by taking frequent short breaks, resulting in a lower cumulative workload. Regardless of their occupation, it is crucial to distribute work breaks throughout the workday to ensure that the cumulative load remains manageable.

Sammendrag

Deadwood represents a dynamic carbon pool in forest ecosystems where microbial decomposition causes fluxes of CO2 to the atmosphere through respiration and organic carbon to the soil through leakage and fragmentation. This study characterises different stages of deadwood of Norway spruce (Picea abies). 35 Norway spruce trees were sampled and categorized on a 0–5 decay scale. For the 14 trees in classes 0–3, two stem discs were collected from two heights. For the 21 trees in classes 4 and 5, a single sample per tree was taken, because decay was relatively uniform throughout the stem. The relative amount of hemicellulose and cellulose declined moderately from decay class 1 to 3 and substantially from decay class 3 to class 4 but small amounts were still present in decay class 5. The relative lignin proportion increased substantially from decay class 3 to 4 and dominated in decay class 5. Relative carbon content increased from 50 to 56% during the decomposition process due to the increasing accumulation of lignin residuals being a typical signature of brown rot decay. A laboratory experiment including three species of brown rot fungi verified decomposition close to 70% of Norway spruce biomass and resulted in 55% carbon content. This was similar to the carbon content in decay class 4 and 5. A novel approach is presented to quantify the carbon flux from deadwood to the soil. First, we calculated the residual proportion of carbon in decayed wood compared to the initial carbon content of live trees. Subsequently, we extended the calculation to determine the amount of remaining carbon from non-decayed wood that was transferred to the soil during each decay class. The approach showed that Norway spruce wood decomposition under field conditions transfers at least 39–47% of the initial wood carbon to the soil carbon pool, depending on soil type. This strengthens the previously under-communicated fact that the carbon flux from deadwood to soil is higher from brown rot decomposition in boreal forests than the corresponding carbon flux in temperate and tropical forests where deadwood is more influenced by white rot fungi.

Til dokument

Sammendrag

This paper asks whether, and if so how, it is possible to design a system characterised by coordination across sectors and levels of governance aimed at governing AMR. The ambition is, firstly, to analyse how coordination problems materialise in the governing of the AMR problem, and secondly, with an emphasis on the structure of decision-making and communication processes, to probe into how coordination of AMR governance is achieved. The paper’s focus is on Norway, which stands out as one of the better performing countries for AMR governance. Drawing on literature on coordination and governance, the paper argues that effective coordination of AMR governance is more likely to follow a ‘bottom-up’ sequencing pattern. It thus provides a study of the systems for governing AMR in a multi-level setting. Through public documents, literature and interviews with key officials involved in AMR management, the paper illustrates the importance of – and organisational barriers to – inter-sectoral cooperation and coordinated strategies and actions at different levels of governance.

Til dokument

Sammendrag

The sustainable production of perennial grasses in Northern Norway is at risk due to the ongoing climate change. The predicted increase in temperatures and variable weather patterns are further expected to create challenges for winter survival of timothy (Phleum pratense L.). Knowledge about the molecular mechanisms underlying freezing tolerance is crucial for developing robust cultivars. The current study is aimed at identifying genes involved in freezing stress response of timothy and studying gene expression differentiation due to field selection in contrasting environments using RNAseq. Four timothy cultivars were field tested for three years in Tromsø and Vesterålen, in Northern Norway. The surviving material from the field tests, along with plants raised from the original seed lots, were subjected to freezing tests. LT50 values varied across cultivars and materials. Many genes coding for transcription factors and proteins known to play an important role in freezing tolerance, like dehydrins, c-repeat binding factors, and late embryogenesis abundant proteins were upregulated with decreasing temperatures. Moreover, genes associated with glycolysis/gluconeogenesis, TCA cycle, glutathione metabolism, proteasome pathways and genes encoding autophagy-related proteins, plasma membrane-associated proteins, sugar and amino acid transporters had elevated expression in field survivors compared to plants raised from the original material. The lower freezing stress tolerance of field survivors despite the elevated expression of several stress-responsive genes might be due to a combination of selection in the field and the age effect. Furthermore, differences in freezing stress response between northern and southern adapted cultivars and surviving material from two field trial locations are discussed.

Til dokument

Sammendrag

In this work, 12 apple cultivars grown organically in three regions of Norway (Telemark, Ullensvang, Viken) were analyzed in terms of fruit quality, with the aim of equating different growing regions under specific climatic conditions. Apples were analyzed for concentration levels of minerals, sugars, sugar alcohols, organic acids, total phenolic content (TPC), radical scavenging activity (RSA), and phenolic profiles. Discovery “Rose” from Telemark stored the highest level of minerals (24,094.5 mg/kg dry weight). Glucose, fructose, sucrose, and sorbitol were the major carbohydrates, whereas the predominant organic acids were quinic acid and malic acid. Cultivar Discovery from Ullensvang had the highest TPC (9.22 g/kg) and RSA (229.32 mmol TE/kg). Of the polyphenols quantified, chlorogenic acid and kaempferol-3-O-glucoside were the most abounded, accounting for 85.50%. Principal component analysis (PCA) shows that the Ullensvang region is the richest source of most carbohydrates, organic acids (quinic, shikimic, and galacturonic), and most polyphenols, whereas the highest content of minerals and maleic acid characterized Viken. Regardless of location, the Discovery cultivar had, on average, the highest sugar and polyphenol contents. The results obtained suggest that organic apples from Norway are a rich source of beneficial compounds that can have a positive impact on human health. In addition, these results may be useful for consumers in identifying apple cultivars with desirable characteristics and for the fruit industry in tracing back the origin of apples. The findings could also be of great interest for locations with similar climate and soil conditions worldwide.