Publikasjoner
NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.
2010
Forfattere
Guro HenselSammendrag
Nettbasert kurs mindre avløpsrenseanlegg
Sammendrag
Det er ikke registrert sammendrag
Sammendrag
Det er ikke registrert sammendrag
Forfattere
Ketil Haarstad Ola HanserudSammendrag
Det er ikke registrert sammendrag
Forfattere
Ola HanserudSammendrag
Det er ikke registrert sammendrag
Sammendrag
Det er ikke registrert sammendrag
Forfattere
Anna H. Petersén Anna H. PetersénSammendrag
Det er ikke registrert sammendrag
Sammendrag
The efficiency of different organic waste material as NPK fertilizer and risk for leaching losses related to shower precipitation in the first part of the growing season was testet in a pot experiment on a sandy soil in green house. Six organic fertilizers were evaluated: liquid anaerobic digestate (LAD) of source separated household waste, nitrified liquid anaerobic digestate (NLAD) of same origin as LAD, meat and bone meal (MBM), hydrolysed salmon protein (HSP), reactor composted catering waste (CW) and cattle manure (CM). Unfertilized control, calcium nitrate (CN) and compound fertilizer, Fullgjødsel® 21-4-10 were used as reference fertilizers. Two levels of N-fertilization were applied: 80 kg N ha-1 and 160 kg N ha-1. The amount of fertilizer applied was based on content of mineral N for LAD, NLAD, CN and Fullgjødsel, while Kjeldahl-N content was used for dosage of MBM, HSP, CW and CM. At Zadoks 14 the pots were given a surplus of 28 mm water, as a simulated shower precipitation, and leached water was collected and analyzed for content of N and P. LAD and Fullgjødsel® gave equal yield of barley and uptake of N, P, and K in barley grain, when equal amounts of mineral nitrogen were applied. NLAD gave significantly lower barley yield than the original LAD due to leaching of nitrate-N after simulated surplus of 28 mm precipitation at Zadoks 14. CW also gave yield of barley grain similar to Fullgjødsel®, but significantly less yield of straw. The nutrient content in the different organic fertilizers caused different yield limiting effects. MBM showed K deficiency and had equally small K uptake as CN. Cattle manure had only a small portion of mineral N, and low uptake of N. NLAD had low uptake of P compared to LAD, which also was related to smaller amount of P applied in NLAD. The was significant increased leaching of nitrate N from the treatments receiving 160 kg N ha-1 of CN and NLAD compared to all the other organic fertilizers. It was found significant increased leaching of NH4-N at LAD with 160 kg N ha-1 compared to the other treatments, but the amount of leached NH4-N was very small compared to the nitrate-N leaching for the CN and NLAD treatments. Although the LAD treatment received less P than the CM treatment, the highest P-leaching was found for the LAD treatment. A relatively high proportion of the leached P was PO4-P for the LAD treatment receiving 160 kg N ha-1. CM and CW also had significantly higher P leaching than the other organic fertilizers at 160 kg N ha-1, while most of the treatments had very small P losses and not significantly higher than the unfertilized control. This study showed that liquid anaerobic digestate (LAD) was equally good as NPK fertilizer to barley when equal amounts of mineral N were applied. Liquid anaerobic digestate made of source separated household waste can be recommended as fertilizer to cereals. Nitrification of the ammonium N in the digestate caused significantly increased nitrate leaching, and can not be recommended. The composted catering (CW) and hydrolysed salmon protein (HSP) also showed good fertilizer effect, but these fertilizers had not optimal NPK composition and had lower K content than the crop demand. In these materials are used as fertilizers additional K should be applied in order to obtain normal yields.
Sammendrag
Green algae are known to produce H2 under sulphur deprivation in a process called biophotolysis, where solar energy is used to split water and generate O2 and H2. There is still considerable potential for improvement and very little is known about how this mechanism varies between species. This is part of Bioforsk research activities linked to green algae and H2 production. In order to make a H2 production process from algae economically viable, we face several challenges, including bioreactor design, optimisation of environmental conditions, efficiency improvement by genetic and metabolic engineering. One possibility for improving the economical potential of a hydrogen production process also includes exploitation of the algal biomass which, as a result of stress reactions, may produce metabolites with pharmaceutical value. Joining forces with The Norwegian University of Life Science (UMB) and The Norwegian Forest and Landscape Institute, Bioforsk has established The Norwegian Centre for Bioenergy Research. Bioforsk has also taken a leading role on biogas in the newly established CenBio - a national Centre for Environmental- friendly Energy Research. The modern biogas laboratories are located close to facilities for plant growth studies, making them easy accessible for experimental studies of the entire chain from biomass to fertiliser. Research activities include innovative pre-treatment of substrates for increased biogas yield, effects of substrate mixtures for biogas production and digestate quality, biogas potential and biogas process studies, digestates as fertiliser, and effects on the environment and climate
Forfattere
Kari SkjånesSammendrag
Green microalgae can be used for a number of commercial applications, including health food for human consumption, aquaculture and animal feed, coloring agents, cosmetics and pharmaceuticals. Several products from green algae that are in use today, consist of metabolites which can be extracted from the algal biomass. The most well known examples are the carotenoids astaxanthin and Β-carotene, which are used as coloring agents and for health promoting purposes. Many species of green algae are able to produce valuable components for different uses, examples are antioxidants, several different carotenoids, polyunsaturated fatty acids, vitamins, anticancer and antiviral drugs. In many cases these components are secondary metabolites which are produced when the algae are exposed for stress conditions like for example nutrient deprivation, light intensity, temperature, salinity, pH and other. In other cases the components have been detected in algae grown under optimal conditions, and little is known about how an optimal production of each product could be induced and how their production would react to stress conditions. Some green algae have shown the ability to produce significant amounts of hydrogen gas during sulfur deprivation, a process which is currently extensively studied. At the moment, the majority of research in this field has focused on the model organism Chlamydomonas reinhardtii, but other species of green algae have also showed this ability. Currently there is scarce information available regarding the possibility for producing hydrogen and other valuable components in the same process. This study explores stress conditions which are known to induce production of the different valuable products in comparison with stress reactions leading to hydrogen production. Wild type species of green microalgae with ability to produce hydrogen during anaerobic conditions, and during sulfur deprivation are compared to species with known ability to produce high amounts of certain valuable metabolites. . This information is explored in order to form a basis for selection of wild type species for a future multidiciplinary process, where hydrogen production from solar energy is combined with production of valuable metabolites and other commercial uses of the algal biomass.