Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2018

Til dokument

Sammendrag

Greenkeepers are looking for alternatives to fungicides for control of turfgrass diseases. Our objective was to evaluate a petroleum- derived spray oil with a blue-green pigment for control of Microdochium patch/pink snow mold (Microdochium nivale) on golf course putting greens with various durations of snow cover. The spray oil was applied at rates 27 or 54 L ha–1 every third week from late August or September to December, either alone, in tank mixture with potassium phosphite (3 kg PO3 ha–1) or in tank mixture with half rate of fungicides approved for turf, in five 1-yr trials in the Nordic countries. The oil was as effective or more effective than fungicides and gave, on average, 94 and 98% disease control at rates 27 and 54 L ha–1, respectively. Tank mixtures with half rate of prochloraz + propioconazole and fludioxonil did not increase disease suppression in a trial with 79 d snow cover. Phosphite reduced disease severity in one trial only and did not improve disease control or turfgrass quality when tank-mixed with the oil. The pigment in the spray oil was highly persistent and improved turfgrass greenness except in a trial where the combination of oil and ice cover gave a transitory black color at ice melt. Another trial with long snow cover showed a drop in turfgrass quality in spring as the spray oil prevented normal green-up. In conclusion, this research shows that a spray oil has the potential to reduce fungicide use on Nordic golf courses.

Til dokument

Sammendrag

European plums are susceptible to fruit cracking close to harvest. Heavy rainfall may lead to extensive damages leaving open wounds in the fruit flesh. In addition, cuticular fractures were found. Plum cultivar and stage of maturity are two major factors affecting the susceptibility to cracking. In order to reduce the plums’ susceptibility to cracking plum trees were treated with foliar fertilization during the growing season. Experiments included treatment with boron, calcium and nitrogen. Experiments including treatments with different levels of foliar fertilization did not show clear correlations between treatments and cracking in all cultivars. However, in some cultivars, more cuticular fractures were observed in fruits from nitrogen treated trees and less fractures in fruit from calcium or boron treated trees. In these experiments foliar fertilization with nitrogen, calcium or boron did not affect the amount of visible cracks in fruit significantly. Foliar fertilization is often shown to delay ripening. Even though fruit samples were picked at the same maturity stage, the effect of reduced cracking due to boron and calcium treatments could be partly an effect of differences in maturity. To make sure the fruits would develop fractures, unripe plum fruits on the trees were kept in a plastic bag with zip-lock and a few mL of water (to obtain 100% RH) for one week (from two to one week prior to estimated harvest date). In this way, the susceptibility of fruits on trees treated differently could be observed.

Til dokument

Sammendrag

We investigated virus infection in the oomycete Pythium polare from the Arctic. From 39 isolates investigated, 14 contained virus-like double-stranded RNA (dsRNA). Next generation sequencing revealed that the P. polare isolate OPU1176 contained three different virus-like sequences. We determined the full-length genome sequence of one of them. The 5397 nt-length genome had two overlapped open reading frames (ORFs) consistent with a toti and toti-like viruses, that we named Pythium polare RNA virus 1 (PpRV1). The ORF2 encoded an RNAdependent RNA polymerase (RdRp). The shifty heptamer motif and RNA pseudoknot were predicted near the stop codon of ORF1, implying that the RdRp could be translated as a fusion protein with the ORF1 protein. Phylogenetic analysis with deduced RdRp amino acid sequences indicated that oomycete virus PpRV1 was closely related to the unclassified arthropod toti-like viruses. The comparison of PpRV1-free and -infected lines suggested that PpRV1 infected in a symptomless manner.