Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2018

Sammendrag

Many nonlinear methods of time series analysis require a minimal number of observations in the hundreds to thousands, which is not always easy to achieve for observations of environmental systems. As a result, finite size effects often hamper proper interpretation of the results; the estimation of the correlation dimension, Lyapunov exponents or KolmogorovSinai entropies, to name a few, is plagued by huge uncertainties. Eddy Covariance (EC) measurements of the carbon exchange between the atmosphere and vegetation provide a noticeable exception. The turbulent wind fields transporting carbon dioxide to the surface layer show variability over a large range of spatiotemporal scales, and their quantification demand a high temporal resolution, typically at 20 Hz. This generates very long time series even for short measurement periods; usually, the raw data are aggregated to carbon cycle observables, like Gross Primary Productivity (GPP) or Net Ecosystem Exchange (NEE) at half-hourly time steps. In this presentation, we investigate the high-resolution raw data of 3D wind speed and CO2 concentrations measured at a young forest plantation in Southeast Norway since July 2018. After introducing the EC technique and the Integrated Carbon Observation System (ICOS), we present results of complexity analysis, Tarnopolski diagrams, q-Entropy and Hurst analysis, and Empirical Mode Decomposition. This provides insights into not only whether the young forest stand is actually a source or sink of carbon, but also when, how and how strong carbon uptake and release are taking place at the site, and the nature of dynamics of carbon fluxes across this system boundary in general.

Sammendrag

The extent of land lease is increasing in many countries, including Norway. This paper develops a von Thünen type model of optimal land plots to lease from a farm’s center. For a single farm setting the optimality principle is that land is leased as long as the expected marginal value of leasing the land is greater than or equal to the expected marginal costs of leasing the land. The single farm model setting captures land lease at the extensive margin, i.e., under absence of competition for leasing land. Land lease at the intensive margin, i.e., when there is competition for leasing farm fields, is more interesting. We distinguish between two cases. In the first case, continued farm operations do not depend on being able to lease more land. Then we show that optimal land lease results when the expected profits for each farm of leasing its least profitable field is equal among farms competing for the same farm field. This also corresponds to an economically efficient allocation of leased land. Our second case at the intensive margin is more complicated. Here, farm survival depends on attracting acreage of leased land to allow for investment in cost saving technology. We show that the resulting allocation of leased land corresponds to the solution of a game involving bidding for land to prevent other farmers from getting land, which in turn leads to farmer exit and therefore increases the future supply of land available at the land lease market. In the first round of the game, winners of the land lease auction pays more for the leased land than they would have done in absence preventive bidding. The model framework is applicable for other settings where locking out competitors are parts of agents’ strategy space. Key words: von Thünen, non-cooperative game theory, auctions with preventive bidding. JEL classification: C72, D44, L13