Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2022

Sammendrag

Ifølge Norsk rødliste for arter (Artsdatabanken 2015) er per 1. august 2015 377 karplanter i fastlands-Norge truet. For en sjettedel av disse, hovedsakelig fjellplanter, er klimaendringer nevnt som den viktigste trusselen. Overvåking av forekomst og utbredelse av disse artene og relevante naturtyper er viktig for bevaring og forvaltning av det biologiske mangfoldet. Dette er spesielt viktig i de mest sårbare landskapene, som den alpine og arktiske sonen.

Til dokument

Sammendrag

Semi- and nonparametric models are popular in the area-based approach (ABA) using airborne laser scanning. It is unclear, however, how many predictors and training plots are needed to provide accurate predictions without overfitting. This work aims to explore these limits for various approaches: ordinary least squares regression (OLS), generalized additive models (GAM), least absolute shrinkage and selection operator (LASSO), random forest (RF), support vector machine (SVM), and Gaussian process regression (GPR). We modeled timber volume (m3·ha–1) for four boreal sites using ABA with 2–39 predictors and 20–500 training plots. OLS, GAM, LASSO, and SVM overfitted as the number of predictors approached the number of training plots. They required ≥15 plots per predictor to provide accurate predictions (RMSE ≤30%). GAM required ≥250 plots regardless of the number of predictors. The number of predictors only mildly affected RF and GPR, but they required ≥200 and ≥250 training plots, respectively. RF did not overfit in any circumstances, whereas GPR overfit even with 500 training plots. Overall, using up to 39 predictors did not generally result in overfit, and for most model types, it resulted in better accuracy for sufficiently large datasets (≥250 plots).

Sammendrag

Arealbrukssektoren (engelsk: Land Use, Land-Use Change and Forestry, LULUCF) omfatter arealbruk og arealbruksendringer, med tilhørende utslipp og opptak av CO2, CH4 og N2O, og er en del av det nasjonale klimagassregnskapet under FNs klimakonvensjon. Framskrivningene presentert her er basert på data og metodikk fra Norges siste rapportering til FNs klimakonvensjon (IPCC), Norges National Inventory Report (NIR), innsendt 8. april 2022 (Miljødirektoratet mfl. 2022). Perioden 2006 – 2020 har vært lagt til grunn som referanseperiode, og framskrivning av arealutvikling og utslipp er i all hovedsak basert på rapporterte data for denne tidsperioden. Utviklingen i gjenværende skog er framskrevet ved hjelp av simuleringsverktøyet SiTree og Yasso07. Klimaendringer under klimascenariet i RCP 4.5 er lagt til grunn. Framskrivingen er framstilt på to ulike formater: Både i henhold til FNs klimakonvensjon sitt regelverk (alle arealbrukskategorier og kilder) og basert på EUs regelverk under LULUCF-forordningen (2018/841) (European Union 2018).

Til dokument

Sammendrag

Climate change is a serious and complex crisis that impacts humankind in different ways. It affects the availability of water resources, especially in the tropical regions of South Asia to a greater extent. However, the impact of climate change on water resources in Sri Lanka has been the least explored. Noteworthy, this is the first study in Sri Lanka that attempts to evaluate the impact of climate change in streamflow in a watershed located in the southern coastal belt of the island. The objective of this paper is to evaluate the climate change impact on streamflow of the Upper Nilwala River Basin (UNRB), Sri Lanka. In this study, the bias-corrected rainfall data from three Regional Climate Models (RCMs) under two Representative Concentration Pathways (RCPs): RCP4.5 and RCP8.5 were fed into the Hydrologic Engineering Center-Hydrologic Modeling System (HEC-HMS) model to obtain future streamflow. Bias correction of future rainfall data in the Nilwala River Basin (NRB) was conducted using the Linear Scaling Method (LSM). Future precipitation was projected under three timelines: 2020s (2021–2047), 2050s (2048–2073), and 2080s (2074–2099) and was compared against the baseline period from 1980 to 2020. The ensemble mean annual precipitation in the NRB is expected to rise by 3.63%, 16.49%, and 12.82% under the RCP 4.5 emission scenario during the 2020s, 2050s, and 2080s, and 4.26%, 8.94%, and 18.04% under RCP 8.5 emission scenario during 2020s, 2050s and 2080s, respectively. The future annual streamflow of the UNRB is projected to increase by 59.30% and 65.79% under the ensemble RCP4.5 and RCP8.5 climate scenarios, respectively, when compared to the baseline scenario. In addition, the seasonal flows are also expected to increase for both RCPs for all seasons with an exception during the southwest monsoon season in the 2015–2042 period under the RCP4.5 emission scenario. In general, the results of the present study demonstrate that climate and streamflow of the NRB are expected to experience changes when compared to current climatic conditions. The results of the present study will be of major importance for river basin planners and government agencies to develop sustainable water management strategies and adaptation options to offset the negative impacts of future changes in climate.