Publikasjoner
NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.
2020
Forfattere
Michael Roleda Sandra Lage Daniel Fonn Aluwini Celine Rebours May Bente Brurberg Udo Nitschke Francesco G. GentiliSammendrag
The increasing use of seaweeds in European cuisine led to cultivation initiatives funded by the European Union. lactuca, commonly known as sea lettuce, is a fast growing seaweed in the North Atlantic that chefs are bringing into the local cuisine. Here, different strains of Arctic U. lactuca were mass-cultivated under controlled conditions for up to 10 months. We quantified various chemical constituents associated with both health benefits (carbohydrates, protein, fatty acids, minerals) and health risks (heavy metals). Chemical analyses showed that long-term cultivation provided biomass of consistently high food quality and nutritional value. Concentrations of macroelements (C, N, P, Ca, Na, K, Mg) and micronutrients (Fe, Zn, Co, Mn, I) were sufficient to contribute to daily dietary mineral intake. Heavy metals (As, Cd, Hg and Pb) were found at low levels to pose health risk. The nutritional value of Ulva in terms of carbohydrates, protein and fatty acids is comparable to some selected fruits, vegetables, nuts and grains.
Forfattere
Tomasz Leszek WoznickiSammendrag
Det er ikke registrert sammendrag
Forfattere
Marianne StenrødSammendrag
Det er ikke registrert sammendrag
Forfattere
Lampros LamprinakisSammendrag
Det er ikke registrert sammendrag
Forfattere
Lampros LamprinakisSammendrag
The term Circular Regulations (CR) is introduced to describe a broad regulatory framework, designed with a circular understanding of the economy. Central in this discussion is the transition towards bioeconomy, a term that is not always used consistently, and sometimes treated in the same way as circular economy (CE), although these terms are not necessarily equivalent. In this article we endorse a systemic interpretation of CE, where a continuum of approaches, extending from reusing/recycling/upcycling to refuse/rethink/reduce, gradually replace existing linear “end-of-life” concepts. CE is a key prerequisite for the bioeconomy shift, a transition that further builds on CE, where circular design and processes are further augmented with increased resource utilization and intensive applications of innovative science and technology. The prevailing regulatory arrangements in CE, however, remain either fragmented or largely based on pre-existing policies, drafted to address issues of the linear economy, thus presenting several limitations when dealing with the underlying paradigm shift: complex market relationships that go beyond the standard neoclassical model. CR adopts an encompassing approach to regulatory design; it is not meant to be a rigid set of rules, but rather a regulatory framework where institutions, market rules, and business practice explicitly account for environmental and socially responsible activities, while securing an enabling environment for innovation. CR directly reflects on CE, where bioeconomy growth is informed by science, enabled by technology, driven by business, and supported by relevant policies and institutional frameworks. The article presents a conceptual setting towards CR and a practical example for its development.
Sammendrag
Det er ikke registrert sammendrag
Sammendrag
Det er ikke registrert sammendrag
Forfattere
Sebastian Sippel Nicolai Meinshausen Erich M. Fischer Enikő Székely Reto KnuttiSammendrag
Det er ikke registrert sammendrag
Sammendrag
Land use and climate change can impact water quality in agricultural catchments. The objectives were to assess long-term monitoring data to quantify changes to the thermal growing season length, investigate farmer adaptations to this and examine these and other factors in relation to total nitrogen and nitrate water concentrations. Data (1991–2017) from seven small Norwegian agricultural catchments were analysed using Mann–Kendall Trend Tests, Pearson correlation and a linear mixed model. The growing season length increased significantly in four of seven catchments. In catchments with cereal production, the increased growing season length corresponded to a reduction in nitrogen concentrations, but there was no such relationship in grassland catchments. In one cereal catchment, a significant correlation was found between the start of sowing and start of the thermal growing season. Understanding the role of the growing season and other factors can provide additional insight into processes and land use choices taking place in agricultural catchments.
Forfattere
Frode Sundnes Marianne Karlsson Froukje Maria Platjouw Nicholas Clarke Øyvind Kaste Salar ValiniaSammendrag
While the role of forestry in mitigating climate change is increasingly subject to political commitment, other areas, such as water protection, may be at risk. In this study, we ask whether surface waters are sufficiently safeguarded in relation to the 2015 launch of a series of measures to intensify forest management for mitigation of climate change in Norway. First, we assess how impacts on water are accounted for in existing regulations for sustainable forestry. Secondly, we provide an overview of the impacts of forestry on water quality relevant to three support schemes: afforestation on new areas, increased stocking density in existing forests, and forest fertilisation. Lastly, we assess the uncertainties that exist with regard to surface waters in the implementation of these measures. We find that the safeguards in place are adequate to protect water resources at the point of initiation, but there is a large degree of uncertainty as to the long-term effect of these mitigation measures.