Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2024

Til dokument

Sammendrag

Forest soils harbor hyper-diverse microbial communities which fundamentally regulate carbon and nutrient cycling across the globe. Directly testing hypotheses on how microbiome diversity is linked to forest carbon storage has been difficult, due to a lack of paired data on microbiome diversity and in situ observations of forest carbon accumulation and storage. Here, we investigated the relationship between soil microbiomes and forest carbon across 238 forest inventory plots spanning 15 European countries. We show that the composition and diversity of fungal, but not bacterial, species is tightly coupled to both forest biotic conditions and a seven-fold variation in tree growth rates and biomass carbon stocks when controlling for the effects of dominant tree type, climate, and other environmental factors. This linkage is particularly strong for symbiotic endophytic and ectomycorrhizal fungi known to directly facilitate tree growth. Since tree growth rates in this system are closely and positively correlated with belowground soil carbon stocks, we conclude that fungal composition is a strong predictor of overall forest carbon storage across the European continent.

Til dokument

Sammendrag

Novel species of fungi described in this study include those from various countries as follows: Australia, Baobabopsis sabindy in leaves of Eragrostis spartinoides, Cortinarius magentiguttatus among deep leaf litter, Laurobasidium azarandamiae from uredinium of Puccinia alyxiae on Alyxia buxifolia, Marasmius pseudoelegans on well-rotted twigs and litter in mixed wet sclerophyll and subtropical rainforest. Bolivia, Favolaschia luminosa on twigs of Byttneria hirsuta, Lecanora thorstenii on bark, in savannas with shrubs and trees. Brazil, Asterina costamaiae on leaves of Rourea bahiensis, Purimyces orchidacearum (incl.Purimyces gen. nov.) as root endophyte on Cattleya locatellii. Bulgaria, Monosporascus bulgaricus and Monosporascus europaeus isolated from surface-sterilised, asymptomatic roots of Microthlaspi perfoliatum. Finland, Inocybe undatolacera on a lawn, near Betula pendula. France, Inocybe querciphila in humus of mixed forest. Germany, Arrhenia oblongispora on bare soil attached to debris of herbaceous plants and grasses. Greece, Tuber aereum under Quercus coccifera and Acer sempervirens. India, Alfoldia lenyadriensis from the gut of a Platynotus sp. beetle, Fulvifomes subramanianii on living Albizzia amara, Inosperma pavithrum on soil, Phylloporia parvateya on living Lonicera sp., Tropicoporus maritimus on living Peltophorum pterocarpum. Indonesia, Elsinoe atypica on leaf of Eucalyptus pellita. Italy, Apiotrichum vineum from grape wine, Cuphopyllus praecox among grass. Madagascar, Pisolithus madagascariensis on soil under Intsia bijuga. Netherlands, Cytosporella calamagrostidis and Periconia calamagrostidicola on old leaves of Calamagrostis arenaria, Hyaloscypha caricicola on leaves of Carex sp., Neoniesslia phragmiticola (incl. Neoniesslia gen. nov.) on leaf sheaths of standing dead culms of Phragmites australis, Neptunomyces juncicola on culms of Juncus maritimus, Zenophaeosphaeria calamagrostidis (incl.Zenophaeosphaeria gen. nov.) on culms of Calamagrostis arenaria. Norway, Hausneria geniculata (incl.Hausneria gen. nov.) from a gallery of Dryocoetes alni on Alnus incana. Pakistan, Agrocybe auriolus on leaf litter of Eucalyptus camaldulensis, Rhodophana rubrodisca in nutrient-rich loamy soil with Morus alba. Poland, Cladosporium nubilum from hypersaline brine, Entomortierella ferrotolerans from soil at mines and postmining sites, Pseudopezicula epiphylla from sooty mould community on Quercus robur, Quixadomyces sanctacrucensis from resin of Pinus sylvestris, Szafranskia beskidensis (incl. Szafranskia gen. nov.) from resin of Abies alba. Portugal, Ascocoryne laurisilvae on degraded wood of Laurus nobilis, Hygrocybe madeirensis in laurel forests, Hygrocybula terracocta (incl. Hygrocybula gen. nov.) on mossy areas of laurel forests planted with Cryptomeria japonica. Republic of Kenya, Penicillium gorferi from a sterile chicken feather embedded in a soil sample. Slovakia, Cerinomyces tatrensis on bark of Pinus mugo, Metapochonia simonovicovae from soil. South Africa, Acremonium agapanthi on culms of Agapanthus praecox, Alfaria elegiae on culms of Elegia ebracteata, Beaucarneamyces stellenboschensis (incl. Beaucarneamyces gen. nov.) on dead leaves of Beaucarnea stricta, Gardeniomyces kirstenboschensis (incl. Gardeniomyces gen. nov.) rotting fruit of Gardenia thunbergia, Knufia dianellae on dead leaves of Dianella caerulea, Lomaantha quercina on twigs of Quercus suber. Melanina restionis on dead leaves of Restio duthieae, Microdochium buffelskloofinum on seeds of Eragrostis cf. racemosa, Thamnochortomyces kirstenboschensis (incl. Thamnochortomyces gen. nov.) on culms of Thamnochortus fraternus, Tubeufia hagahagana on leaves of Hypoxis angustifolia, Wingfieldomyces cypericola on dead leaves of Cyperus papyrus. Spain, Geastrum federeri in soil under Quercus suber and Q. canariensis, Geastrum nadalii in calcareous soil under Juniperus, Quercus, Cupressus, Pinus and Robinia, ........................................

Sammendrag

Gray mold, caused by Botrytis spp., is a serious problem in Norway spruce seedling production in forest nurseries. From 2013 to 2019, 125 isolates of Botrytis were obtained from eight forest nurseries in Norway: 53 from Norway spruce seedlings, 16 from indoor air, 52 from indoor surfaces, and four from weeds growing close to seedlings. The majority of isolates were identified as B. cinerea, and over 60% of these were characterized as Botrytis group S. B. pseudocinerea isolates were obtained along with isolates with DNA sequence similarities to B. prunorum. Fungicide resistance was assessed with a mycelial growth assay, and resistance was found for the following: boscalid (8.8%), fenhexamid (33.6%), fludioxonil (17.6%), pyraclostrobin (36.0%), pyrimethanil (13.6%), and thiophanate-methyl (50.4%). Many isolates (38.4%) were resistant to two to six different fungicides. A selection of isolates was analyzed for the presence of known resistance-conferring mutations in the cytb, erg27, mrr1, sdhB, and tubA genes, and mutations leading to G143A, F412S, ΔL497, H272R, and E198A/F200Y were detected, respectively. Detection of fungicide resistance in Botrytis from Norway spruce and forest nursery facilities reinforces the necessity of employing resistance management strategies to improve control and delay development of fungicide resistance in the gray mold pathogens.