Publikasjoner
NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.
2018
Forfattere
Trygve S. Aamlid Tatsiana Espevig Pia Heltoft Thomsen Agnar Kvalbein Klaus Paaske Oiva Niemeläinen Pentti Ruttunnen Auli Kedonpara Tom Hsiang Annick BertrandSammendrag
Det er ikke registrert sammendrag
Forfattere
Milica Fotiric Aksic Radoslav Cerovic David Slavkovic Stein Harald Hjeltnes Mekjell MelandSammendrag
The Norwegian newly bred pear cultivar, Celina/QTee®, which was launched in 2010, has been released from the Norwegian breeding program that was initiated in 1983. It was derived from the combination ‘Colorée de Juillet’ × ‘Williams’. In Norway the flowering is medium to late and it ripens in the beginning of September. It has large attractive fruits with a red blush. It has a good fruit quality, storability and shelf life. Cross pollination is necessary in order to have high yields of this diploid cultivar. Pollination of ‘Celina’ with pollen of four donors (‘Conference’, ‘Kristina’, ‘Anna’ and ‘Fritjof’), together with open- and self-pollination were studied in this experiment during the 2016 season in Norway. The dynamics of the pollen tube growth (third, sixth and ninth day after anthesis) in style (upper, middle and lower third) and parts of the ovary in all crossing combination, were observed by fluorescent microscopy. Besides giving the best results regarding the average number of pollen tubes in different parts of pistils and the dynamics of pollen tube growth, ‘Conference’ was the only one of which the pollen tubes didn’t show any incompatible signs while growing through the transmitting tissue of the ‘Celina’ style. According to those preliminary results, ‘Conference’ was the best pollenizer, followed by ‘Kristina’. The study has to be repeated for another season.
Sammendrag
Det er ikke registrert sammendrag
Sammendrag
Det er ikke registrert sammendrag
Sammendrag
Dei semi-naturlige naturtypane Boreal hei og Semi-naturlig eng er vurdert som sårbar VU, mens Kystlynghei og Semi-naturlig strandeng er vurdert som sterkt trua EN. Strandeng er vurdert som sårbar VU. Slåttemark er vurdert som kritisk trua CR fordi arealet av denne naturtypen har gått kraftig tilbake siste femti år. Semi-naturlige naturtypar er avhengige av riktig skjøtsel for å oppretthalde artsmangfaldet og økologiske funksjonar, og den dominerande påverkingsfaktoren for alle dei vurderte naturtypane er endringar i jordbruket og mangel på skjøtsel som er nødvendig for å oppretthalde naturtypane.
Sammendrag
Det er ikke registrert sammendrag
Forfattere
Anita SønstebySammendrag
Det er ikke registrert sammendrag
Sammendrag
Det er ikke registrert sammendrag
Sammendrag
Det er ikke registrert sammendrag
Forfattere
Lise Grøva Boris Fuchs Emma Brunberg Unni Støbet Lande Kristin Sørheim Svein-Olaf Hvasshovd Solveig Marie StubsjøenSammendrag
SENSOR TECHNOLOGY TO DETECT TICK-BORNE FEVER IN SHEEP ON RANGE PASTURE? Lise GRØVA 1), Boris Fuchs 2), Emma BRUNBERG 3), Unni Støbet LANDE 2), Kristin SØRHEIM 2), Svein Olav Hvasshovd 4), Solveig Marie Stubsjøen 5) 1) NIBIO, Norwegian Institute of Bioeconomy Research, Gunnars veg 6, 6630 Tingvoll, Norway; lise.grova@nibio.no 2) Inland Norway University of Applied Sciences, Campus Evenstad, Elverum, Norway 3) NORSØK, Norwegian Centre for Organic Agriculture, Gunnars veg 6, 6630 Tingvoll, Norway; emma.brunberg@djurskyddet.se 4) NTNU, Norwegian University of Science and Technology, Trondheim, Norway 5) VETINST, Norwegian Veterinary Institute, Oslo, Norway More than two million sheep graze on unimproved, rough grazing land during the summer months each year in Norway. Free ranging sheep are perceived to experience high level of animal welfare through their opportunity to perform natural behaviour, but these benefits are compromised when sheep experience predator attacks, disease and accidents. Ensuring animal health and welfare in farming systems gets increased attention, and new policies and legislations are implemented. About 125 000 sheep (6-7%) are lost on such pastures every year. Tick-borne fever (TBF) is a disease considered to be a major challenge in sheep farming during the grazing season along the coast of south-western Norway. Clinical signs of TBF is ofte observed within 14 days of infection, starting with an abrupt rise in rectal temperature (often above 41o C). Being able to monitor farm animals on range pastures is increasingly important and implementing available technology for this purpose should be exploited. Implementation of sensor technology in rangeland sheep farming can monitor physiological parameters, such as body temperature (T). Integrating such sensors in a GPS tracking system may contribute to detect, locate and treat sick animals, as well as improve our knowledge of animal health in time and space in rangeland farming systems. The objective of the work presented here is to evaluate if a temperature sensor can be used for early detection of Tick-borne fever (TBF). In 2016, temperature sensors (Star Oddi, Iceland) were implanted in the abdomen of 20 lambs in a one sheep flock in a TBF risk area and in 20 lambs from one flock in a non-TBF risk area in Norway. The sensors were programmed to log temperature every 10 minutes, and were implanted in lambs in early June and collected in early September to retrieve data. Temperature data were obtained from 13 temperature loggers from lambs in the TBF risk are and 14 loggers in the non-TBF risk area. The telemetry system (Telespor, Norway) was used on all lambs, and provided accelerometer information and real-time positioning data that was used for continuous surveillance on range pasture. All animals were monitored twice a day for approximately one month period after turned out on tick infested pastures. Number and magnitude of fever was calculated for each lamb. Preliminary results from this study will be presented at the conference. Keywords: sheep, sensor technology, temperature, tick-borne fever, rangeland