Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2012

Abstract

The objective of this paper is to examine a method for estimation of land cover statistics for local environments from available area frame surveys of larger, surrounding areas. The method is a simple version of the small-area estimation methodology. The starting point is a national area frame survey of land cover. This survey is post-stratified using a coarse land cover map based on topographic maps and segmentation of satellite images. The approach is to describe the land cover composition of each stratum and subsequently use the results to calculate land cover statistics for a smaller area where the relative distribution of the strata is known. The method was applied to a mountain environment in Gausdal in Eastern Norway and the result was compared to reference data from a complete in situ land cover map of the study area. The overall correlation (Pearson’s rho) between the observed and the estimated land cover figures was r = 0.95. The method does not produce a map of the target area and the estimation error was large for a few of the land cover classes. The overall conclusion is, however, that the method is applicable when the objective is to produce land cover statistics and the interest is the general composition of land cover classes – not the precise estimate of each class. The method will be applied in outfield pasture management in Norway, where it offers a cost-efficient way to screen the management units and identify local areas with a land cover composition suitable for grazing. The limited resources available for in situ land cover mapping can then be allocated efficiently to in-depth studies of the areas with the highest grazing potential. It is also expected that the method can be used to compile land cover statistics for other purposes as well, provided that the motivation is to describe the overall land cover composition and not to provide exact estimates for the individual land cover classes.

To document

Abstract

Interspecific interaction among sympatric ungulates is important in management and conservation. We investigated behavioral interference between sympatric wild or semidomestic reindeer (Rangifer tarandus tarandus) and sheep (Ovis aries) in two field studies and one enclosure experiment. For free-ranging wild and semidomestic reindeer, interference between the two species increased with decreasing distances, occurring only at less than 200 m and 30 m, for wild and semidomestic reindeer, respectively, and neither species consistently dominated the other. In a controlled, duplicated experiment we tested interference and confrontations at the feeding patch level among semidomestic reindeer and sheep within 40 × 50 m enclosures. When new reindeer or sheep were introduced into enclosures already occupied by reindeer, new reindeer resulted in significantly more interference and confrontations among individuals compared to new sheep; i.e., intraspecific interference was more prevalent than interspecific interference at equal densities. For all study areas, confrontations decreased with time after “first encounter,” indicating cohabituation. A sympatric use of pastures was not visually disruptive for recorded grazing behavior for either species.

To document

Abstract

Long-term and varied land use has had a major influence on the vegetation in rural Norway, and the traditional open landscapes are now being replaced by forests. In the present investigation, we assess and quantify structural vegetation changes caused by changes in land use and climate. Up-to-date actual vegetation maps from three rural study areas were compared with interpreted historical vegetation maps and potential natural vegetation (PNV) models. Our findings indicate that the present vegetation structure is strongly influenced by land use. In the studied sites, 56–66% of the areas presently have another vegetation type than expected from a natural state (PNV). The mean turnover of vegetation types in the study areas during the past 35–40 years was 25%. Our study highlights that the influence of land-use needs to be accounted for when considering the effects of climate change.