Publikasjoner
NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.
2011
Sammendrag
The aim of this study is to see if the raw material influences fixation and leachability of wood preservatives. Moving towards more eco-friendly and –concious society, the wood industries must adjust itself to new rules and regulations. Greener solutions in wood protection are being tested and introduced, older systems are being improved, but questions still arise concerning some elements currently used in wood preservation. Preservatives leaching into the nature is a problem, especially agents that consist copper. Studies have been conducted on the raw material`s influence on impregnability and variations in sapwood penetration have been found. This gives reason to believe that the leaching of wood preservatives is also influenced by the raw material. This study tries to set the variation of leachability of Wolmanit CX-8 and Tanalith into a system, evaluating the origin of a tree and the origin of a sample. The study uses Scots pine (Pinus sylvestris) as a raw material. Material was harvested from different stands in Norway and Denmark. Pine`s sapwood was cut into samples in size of 20x20x50mm. The samples were treated with the wood protection agents Wolmanit CX-8 and Tanalith. The variation in leachability within trees, between trees and between different stands was studied. Within this material, it is possible to trace the individual sample to its original position in the stem. Samples were climatized, impregnated with preservatives and leached according to standard EN84. Copper and boron content in water samples was determined by an ICP (Inductively Coupled Plasma) technique. Comparing leaching results with different variables, correlation was found with latitude and vertical position of the sample, indicating that southern stands leach out more preservative. The lowest part of the tree does not fixate preservatives.
Sammendrag
Det er ikke registrert sammendrag
Sammendrag
Det er ikke registrert sammendrag
Sammendrag
There is a great demand for involving rapid, non destructive and less time consuming methods for quick control and prediction of soil quality, environmental monitoring, and other precision measurements in agriculture. Near infrared reflectance spectroscopy (NIRS) is considered as an appropriate alternative method to conventional analytical methods for large scale measurements. The objective of this study was to investigate the possibilities of NIRS for prediction of some chemical properties of soil samples. A total of 97 samples from Stara Zagora, Kazanlak and Gurkovo region taken from the 0-40 cm layer were collected. Soil types were Luvisols, Vertisols, Fluvisols and Rankers. The samples were analyzed for total phosphorus by spectrometric determination of phosphorus soluble in sodium hydrogen carbonate solution, total nitrogen by Kjeldahl method, pH (H O)-potentiometrically and electrical conductivity (EC). 2 The spectral data of all air dried samples were measured using an Perkin Elmer Spectrum One NTS, FT-NIR Spectrometer, within the range from 700 to 2500 nm. Partial Least Squares (PLS) regression was used to built models to determine soil chemical parameters from the NIR spectra. Two-third of the samples were used as a calibration set and the remaining samples as independent validation test set. The best model was obtained for total nitrogen with a coefficient of determination r=0,91, standard error of calibration SEP=336 mg/kg, and the ratio of the standard variation of the reference data to the SEP, indicating the performance of the calibration, of RPD=2,3. The accuracy of prediction was poor for electrical conductivity. The results obtained clearly indicated that NIRS had the potential to predict some soil components rapidly and without sample preparation.
Forfattere
Markus Reichstein Miguel D. Mahecha Nuño Carvalhais Gitta Lasslop Sonia I. Seneviratne Holger Lange Alessandro Cescatti Mirco MigliavaccaSammendrag
The release of carbon dioxide (CO2) from the land surface via different respiratory processes is a major flux in the global carbon cycle, antipodal to CO2 uptake via photosynthesis. Understanding the sensitivity of respiratory processes to temperature is central for quantifying the climate–carbon cycle feedback. In a recent study we approximated the sensitivity of terrestrial ecosystem respiration to air temperature (Q10) across 60 FLUXNET sites. For this objective, we developed a novel methodology that circumvents seasonally confounding effects. Contrary to previous findings, our results suggest that Q10 is independent of mean annual temperature, does not differ among biomes, and is confined to values around 1.4 ± 0.1. However, the shape of the strong relation between photosynthesis and respiration is highly variable among sites. The results may partly explain a less pronounced climate–carbon cycle feedback than suggested by current carbon cycle climate models. In the talk we put our findings into context with other recent results and critically discuss their potential for evaluating temperature sensitivity of respiration in terrestrial biosphere models and parameterizing future land surface schemes.
Sammendrag
Aims Beech (Fagus sylvatica L.) is an important species in natural and managed forests in Europe. This drought-sensitive species dominates even-aged stands as well more natural stands composed of a mixture of tree species, age and size classes. This study evaluates the extent that heterogeneity in spacing and tree diameter affect the seasonal availability and use of water. Methods Two stands were evaluated: 1) a heterogeneous forest remnant (NAT) with trees up to ca. 300 years old, a mean top height of 28.4 m, and a total of 733 stems ha-1 with stem diameters averaging 18 cm and 2) an even-aged 80-year old stand (MAN), with a height of 25 m, and a total of 283 stems ha-1 with diameters averaging 38 cm. Stem sap flow, Js (g m-2 s-1), was continuously measured in 12 (MAN) and 13 (NAT) trees using 20 mm long heat dissipation sensors. Individual tree measures of sap flow were correlated using non-linear statistical methods with air vapour pressure deficit (D, hPa) and global radiation (Rg, J m-2 day-1), along with contraints imposed by reductions in soil water content (SWC). Soil water content was measured as volumetric % using time domain reflectometry. Important findings The daily integrated Js (Js-sum) for trees growing in the evenly spaced MAN stand and trees in canopy and closed forest positions in NAT stand decreased as the availability of soil moisture was reduced. In the heterogeneous NAT stand, SWC in a recently formed canopy gap remained high throughout the vegetation period. Based on regression models, the predicted relative decrease in Js-sum for dry relative to moist soil water conditions in the closed forest (at mean daily D = 10 hPa) was 7-11% for trees near the gap and 39-42% for trees in the closed forest. In MAN the reduction in Js-sum was 29% in dry relative to moist conditions. Js-sum in the outer 20 mm of the xylem in NAT was lower than that in MAN and the rate of decline in Js with xylem depth was less in NAT than in MAN. In MAN, Js-sum in deep and outer xylem was negatively affected at low soil moisture availability; in NAT this was the case for only the outer xylem indicating that deep roots could be important in supplying water at times of low soil moisture in the upper soil.
Forfattere
Miguel D. Mahecha Markus Reichstein Nuño Carvalhais Gitta Lasslop Holger Lange Sonia I. Seneviratne Rodrigo Vargas Christof Ammann M. Altaf Arain Alessandro Cescatti Ivan A. Janssens Mirco Migliavacca Leonardo Montagnani Andrew D. RichardsonSammendrag
We estimated the sensitivity of terrestrial ecosystem respiration to air temperature across 60 FLUXNET sites by minimizing the effect of seasonally confounding factors. Graf et al. now offer a theoretical perspective for an extension of our methodology. However, their critique does not change our main findings and, given the currently available observational techniques, may even impede a comparison across ecosystems.
Forfattere
Rastislav Solár Janka Dibdiakova Miroslav Mamo Frantiek Kaík Zuzana Rázgová Vladimír Vacek Jozef Sivák Milan GaffSammendrag
A comparable series of specimens from spruce wood were pre-treated with sodium hydroxide, sodium hydroxide and hydrogen peroxide, or per-acetic acid sequences. The pre-treatments reduced the yield of pulps and their Kappa number noticeably, diminished the degree of polymerization moderately, and increased their brightness. One-step peroxide bleaching of pulps from the pre-treated spruce wood resulted in their higher brightness compared to bleached pulp from sound wood. From the viewpoint of improved properties of pulp, the most efficient were the sodium hydroxide/per-acetic acid and per-acetic acid/sodium hydroxide sequences. The pre-treatments did not influence mechanical strength of the obtained pulps significantly.
Sammendrag
Long-term monitoring of headwater semi-natural catchments is used to document persistence and changes in ecosystems. At three headwater catchments in the Bramke basin in Northern Germany, physical and chemical variables in rainfall, soil solution from various depths (20–300 cm) and streamwater have been monitored. The Lange Bramke catchment is largely covered by a Norway spruce (Picea abies, Karst.) stand planted in the 1950ies. Over 29 years, 4310 water samples from streamwater and 5475 soil water samples were analysed for major constituents. Both linear methods (principal component analysis (PCA) and cross correlation (CC)) as well as non-linear methods (isometric feature mapping (ISOMAP) and maximum variance unfolding (MVU)) were used to analyze the spatiotemporal patterns of dissolved major ion concentrations in soil solution and streamwater. This approach provides a multiscale characterisation of links between soil water and streamwater at the catchment scale. Pattern identification augments the interpretation of processes in terms of transport and storage. The long time scales were dominated by trends in ions implicated in soil acidification. This reflects the decreasing input of acid deposition. At the annual scale, where hydrological effects dominate, each of the three adjacent catchments showed different patterns. Various empirical and process-based models have been applied in the past to the Bramke catchments. Results of the data-oriented approach can be used to indicate the potential and limits of process-oriented models for this data set.
Sammendrag
For tracer studies at the catchment scale, travel times are often assumed to be stationary. We question the validity of this assumption. We analyzed a series of tracer experiments conducted under exceptionally controlled conditions at Gårdsjön, Sweden. The Gårdsjön G1 catchment was covered by a roof underneath which natural throughfall has been replaced by artificial irrigation with a pre-defined chemical composition. This unique setup was used to perform replicated catchment scale Br tracer experiments under steady state storm flow conditions in five different years. A log-normal distribution function was fitted to all Br breakthrough curves. Fitted parameter values differed significantly for some of the experiments. These differences were not only related to the slightly different hydrologic boundary and initial conditions for the experiments, but also to seasonal changes in catchment properties that may explain the different flow paths during the experiments. We conclude that the travel time distribution is not only linked to discharge but also explicitly related to other water fluxes such as evapotranspiration, and that it is not stationary even under steady-state flow conditions. Since the attenuation of soluble pollutants is fundamentally linked to the travel times of water through the subsurface of a catchment, it is of crucial importance to understand the latter in detail. However, it is still unclear which are the dominant processes controlling their distribution.