Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2013

Til dokument

Sammendrag

1. Whether plant competition grows stronger or weaker across a soil fertility gradient is an area of great debate in plant ecology. We examined the effects of competition and soil fertility and their interaction on growth rates of the four dominant tree species in the sub-boreal spruce forest of British Columbia. 2. We tested separate soil nutrient and moisture indices and found much stronger support for models that included the nutrient index as a measure of soil fertility. 3. Competition, soil fertility and their interaction affected radial growth rates for all species. 4. Each species supported a different alternate hypothesis for how competitive interactions changed with soil fertility and whether competition intensity was stronger or weaker overall as soil fertility increased depended on the context, specifically, species, neighbourhood composition and type of competition (shading vs. crowding). 5. The four species varied slightly in their growth response to soil fertility. 6. Individual species had some large variations in the shapes of their negative relationships between shading, crowding and tree growth, with one species experiencing no net negative effects of crowding at low soil fertility. 7. Goodness-of-fit was not substantially increased by models including competition–soil fertility interactions for any species. Tree size, soil fertility, shading and crowding predicted most of the variation in tree growth rates in the sub-boreal spruce forest. 8. Synthesis. The intensity of competition among trees across a fertility gradient was species- and context-specific and more complicated than that predicted by any one of the dominant existing theories in plant ecology.

Til dokument

Sammendrag

Forests will play a crucial role in the transformation from an economy based on fossil fuels to one relying on renewable resources. Hence, besides being a source of raw material for the forest industry, in the future, forests are expected to increasingly contribute to the production of energy as well as providing a wide range of environmental and social services. Thus, the objective of the present study is to assess the short-term and long-term potential for increasing sustainable wood supply in the EFINORD countries. Present practices and prospects for intensive forest management have been assessed using information from a questionnaire complemented by compilation and evaluating of national forest inventory (NFI) data and other forest sector relevant information. The study indicates a striking variation in the intensity of utilisation of the wood resources within the EFINORD region. For the region as a whole, there seems to be a substantial unused (biophysical) potential. However, recent NFI data from some countries indicate that annual felling rates can be underestimated. If felling rates are higher than currently recognised then, given the increased demand for wood-based energy, there appears to be a need to discuss strategies for large-scale implementation of more intensive forestry practices to ensure that the availability of wood resources in the future can meet an increasing demand in the EFINORD countries.

Til dokument

Sammendrag

Use of harvest residues for bioenergy is minimal in Norway, and the proposed increase of 14 TWh in annual bioenergy use by year 2020 may thus to a large part be based on residues from conventional timber harvesting. To judge the potential of harvest residues for bioenergy both in the short and long run, we present cost-supply curves for residue harvesting at national and regional levels. We produce different harvesting scenarios using the detailed forest model Gaya/J and a representative description of the Norwegian forest area from Norwegian national forest inventory (NFI) sample plots including environmental restrictions. Forest information is sufficiently detailed to estimate necessary biomass fractions and calculate costs of harvest residue extraction at plot level. We estimate a maximum annual energy production of 5.3 TWh from harvest residues with the present harvest level, which is far from the official target. In principle, there are two solutions for achieving this target; increase harvests and thus the corresponding residue supply, or increase the use of roundwood for energy purposes on the expense of pulpwood. Scenarios with long-run increase in timber production shows an annual energy potential from harvest residues in the range 6–9 TWh. Thus, to reach the political target roundwood must be used for energy production.

Til dokument

Sammendrag

A mountain pine beetle (MPB) epidemic is currently ravaging large areas of interior British Columbia (BC) with significant implications for ecosystem services including future timber supply and community economic stability. Information is needed on future stand dynamics in areas of impacted forests that are unlikely to be salvaged logged. Of greatest concern are stands dominated by lodgepole pine (>50% timber volume). Predicting how surviving trees in these areas respond and grow and the timing and species composition of natural regeneration ingress is of critical importance for multiple forest values. We undertook a retrospective study in the Flathead Valley of southeastern British Columbia where an intense MPB epidemic peaked in 1979–1980. Our objective was to gain insight into stand recovery and stand self-organization as influenced by species-specific growth responses of different sized secondary structure trees (individual seedling, sapling, sub-canopy and canopy trees surviving the epidemic) and post-beetle regeneration dynamics. MPB mortality rates, the percent of basal area killed by beetles, varied from 42% to 100% with most stands between 60% and 80%. In general, all surviving secondary structure released but the extent of growth release exhibited species variability. Release of surviving canopy lodgepole pine trees was often dramatic and greatest in stands with high total stand MPB mortality rates. Ingress of natural regeneration was slow in the first few years after MPB attack but there was a strong pulse of recruitment 10–20 years post disturbance which then slowed considerably. Nearly 30 years after the MPB attack, the stocking and composition of the understories have changed dramatically. Overall, the occurrence of the MPB epidemic resulted in more structurally and compositionally diverse stands leading to multiple successional pathways different from those of even-age pine dominated stands. The recovery and self-organization of unsalvaged natural stands in the Flathead Valley was a complicated process. It has provided insights for future forest management in areas impacted by the current massive MPB epidemic ongoing for the past decade in western North America.