Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2020

Til dokument

Sammendrag

Because of generally small log piles, loading forwarders during thinning is time consuming. The Assortment Grapple, an innovative grapple with an extra pair of claws which facilitates the handling of two assortments during one loading crane cycle, has been designed to decrease forwarders’ loading time consumption. A standardized experiment was performed in a virtual thinning stand using a machine simulator with the objectives to form guidelines for working with the Assortment Grapple and to analyse its development potential. Four experienced operators participated in the study. According to the results, the Assortment Grapple’s accumulating function is beneficial only when there are no remaining trees between piles loaded during the same crane cycle. In such cases, none of participating operators lost time, and 3 of 4 operators saved time notably. The problem with the remaining trees is the extra time required to steer the crane tip around them. Therefore, a harvester should place those log piles that are later to be forwarded together in the same space with no remaining trees between the piles. Furthermore, we recommend that the Assortment Grapple’s usability will be improved by adding an own rocker switch on the forwarder’s controls to command the extra claws.

Til dokument

Sammendrag

Spruce-fir-beech mixed forests cover a large area in European mountain regions, with high ecological and socio-economic importance. As elevation-zone systems they are highly affected by climate change, which is modifying species growth patterns and productivity shifts among species. The extent to which associated tree species can access resources and grow asynchronously may affect their resistance and persistence under climate change. Intra-specific synchrony in annual tree growth is a good indicator of species specific dependence on environmental conditions variability. However, little attention has been paid to explore the role of the inter-specific growth asynchrony in the adaptation of mixed forests to climate change. Here we used a database of 1790 tree-ring series collected from 28 experimental plots in spruce-fir-beech mixed forests across Europe to explore how spatio-temporal patterns of the intra- and inter-specific growth synchrony relate to climate variation during the past century. We further examined whether synchrony in growth response to inter-annual environmental fluctuations depended on site conditions. We found that the inter-specific growth synchrony was always lower than the intra-specific synchrony, for both high (inter-annual fluctuations) and low frequency (mid- to long-term) growth variation, suggesting between species niche complementarity at both temporal levels. Intra- and inter-specific synchronies in inter-annual growth fluctuations significantly changed along elevation, being greater at higher elevations. Moreover, the climate warming likely induced temporal changes in synchrony, but the effect varied along the elevation gradient. The synchrony strongly intensified at lower elevations likely due to climate warming and drying conditions. Our results suggest that intra- and inter-specific growth synchrony can be used as an indicator of temporal niche complementarity among species. We conclude that spruce-fir-beech mixtures should be preferred against mono-specific forests to buffer climate change impacts in mountain regions.

Til dokument

Sammendrag

Denne rapporten gir en vurdering av hvorvidt praktiseringen av Forskrift om tilskudd til forebyggende tiltak mot rovviltskader og konfliktdempende tiltak (FKT-forskriften) har god måloppnåelse, om den kan realiseres på en bedre måte enn i dag og i så fall hvordan. Arbeidet bygger på litteratur- og dokumentstudier samt intervjuer av representanter for beitenæringene og landbruks- og miljøforvaltningen. Oppdraget omfatter a) en utredning av hvordan FKT-ordningen er organisert, hvilke tiltak som har mottatt støtte og omfanget av støtten som er gitt, b) en vurdering av effekten av forebyggende tiltak, effekten av tiltak som kan øke kunnskapsgrunnlaget og effekten av konfliktdempende tiltak og c) en beskrivelse og drøfting av forslag til tiltak og forskriftsendringer som kan gi forbedret måloppnåelse for FKT-forskriften samt en samfunnsøkonomisk vurdering av disse.

Til dokument

Sammendrag

Key message This literature review identified the main factors for the success of different silvicultural approaches to regenerate sessile oak naturally and unveiled at the same time important knowledge gaps. Most previous studies were only short-term and restricted to a few factors and single locations. Hence, the findings of these studies are of limited explanatory power and do not allow to develop general, widely applicable management recommendations. Context Successful natural regeneration of sessile oak (Quercus petraea (Matt.) Liebl.) through silvicultural actions depends on a number of biotic, abiotic and management factors and their interactions. However, owing to a limited understanding about the influence of these critical factors, there is great uncertainty about suitable silvicultural approaches for natural oak regeneration, in particular regarding the size of canopy openings and speed of canopy removal. Aims This study aimed at critically evaluating documented information on natural regeneration of sessile oak. Specifically, we identified (i) the factors that determine the success of approaches for natural regeneration and (ii) evaluated the evidence base associated with different silvicultural approaches. Methods A comprehensive literature search was done considering relevant peer-reviewed publications of ISI-listed journals as well as non-ISI listed published papers and reports by practitioners. Out of more than 260 collected references, a set of 53 silvicultural ‘core publications’ was identified and analyzed using a catalogue of numeric and categorical evaluation criteria. Results The most important factors determining regeneration success extracted from the literature were light availability, presence of competing vegetation, initial oak seedling density, browsing of seedlings and intensity of stand tending measures. However, the review revealed also great uncertainty regarding the interactions between these factors and the magnitude of their influence. Most studies were of short duration and restricted to single locations. In only 20% of the experimental studies, the observation period exceeded five years. Total costs of regeneration efforts were quantified and reported in only two studies. This lack of data on the expenses of different approaches to natural oak regeneration appears to be one of the most crucial knowledge deficits revealed in this literature review. Conclusion Natural regeneration of sessile oak may be achieved under a wide range of canopy openings, if competing vegetation and browsing is negligible, seedling density is high and tending to remove competing vegetation is carried out consistently. However, since the silvicultural regeneration success depends on the interactions among these factors, which have often not been adequately considered, we caution against general recommendations for silvicultural systems developed from case studies and call for new long-term studies with comprehensive experimental designs.

Til dokument

Sammendrag

Key message This study showed that regeneration success (presence of oaks ≥ 150 cm in total height) in artificial canopy openings of a mature mixed sessile oak stand was mainly driven by initial oak seedling density. Context Small-scale harvesting methods as practiced in close-to-nature forestry may disadvantage the regeneration of more light-demanding tree species including sessile oak (Quercus petraea [Mattuschka] Liebl.) and thus cause regeneration failure. However, owing to the short-term nature of many previous studies, regeneration success of sessile oak could not be properly ascertained. Aims This study examined oak seedling development over a time period of ten growing seasons in canopy openings of 0.05 to 0.2 ha in size created through group selection harvesting in a mature mixed sessile oak forest in southwestern Germany. We tried to answer the following research questions: (i) how do initial stand conditions relate to and interact with oak seedling density and seedling height growth, and (ii) what are the driving factors of regeneration success under the encountered site conditions. Methods We evaluated the influence of solar radiation, Rubus spp. cover, initial oak seedling density, and competition from other tree species on change in density and height of oak seedlings, as well as overall regeneration success (oak seedlings ≥ 150 cm in height). Results Regeneration success increased with initial oak seedling density and solar radiation levels and decreased with early Rubus spp. cover. Density and maximum height of oak seedlings was negatively related with competition of other woody species. Conclusion Results of our longer-term study demonstrate that forest management activities to regenerate sessile oak naturally are only successful in stands (i) without advance regeneration of other woody species and without established, recalcitrant ground vegetation, (ii) with a sufficiently high initial oak seedling density in larger patches following mast years, and (iii) where periodic monitoring and control of competing woody individuals can be ensured. Our findings further corroborate the view that natural regeneration of sessile oak in small-scale canopy openings is possible in principle.

Til dokument

Sammendrag

Climate change in the Nordic countries is projected to lead to both wetter and warmer seasons. This, in combination with associated vegetation changes and increased animal migration, increases the potential incidence of tick-borne diseases (TBD) where already occurring, and emergence in new places. At the same time, vegetation and animal management influence tick habitat and transmission risks. In this paper, we review the literature on Ixodes ricinus, the primary vector for TBD. Current and projected distribution changes and associated disease transmission risks are related to climate constraints and climate change, and this risk is discussed in the specific context of reindeer management. Our results indicate that climatic limitations for vectors and hosts, and environmental and societal/institutional conditions will have a significant role in determining the spreading of climate-sensitive infections (CSIs) under a changing climate. Management emerges as an important regulatory “tool” for tick and/or risk for disease transfer. In particular, shrub encroachment, and pasture and animal management, are important. The results underscore the need to take a seasonal view of TBD risks, such as (1) grazing and migratory (host) animal presence, (2) tick (vector) activity, (3) climate and vegetation, and (4) land and animal management, which all have seasonal cycles that may or may not coincide with different consequences of climate change on CSI migration. We conclude that risk management must be coordinated across the regions, and with other land-use management plans related to climate mitigation or food production to understand and address the changes in CSI risks.

Til dokument

Sammendrag

Purpose Biogas residues, digestates, contain valuable nutrients and are therefore suitable as agricultural fertilizers. However, the application of fertilizers, including digestates, can enhance greenhouse gas (GHG) emissions. In this study different processes and post-treatments of digestates were analyzed with respect to triggered GHG emissions in soil. Methods In an incubation experiment, GHG emissions from two contrasting soils (chernozem and sandy soil) were compared after the application of digestate products sampled from the process chain of a food waste biogas plant: raw substrate, digestate (with and without bentonite addition), digestates after separation of liquid and solid phase and composted solid digestate. In addition, the solid digestate was sampled at another plant. Results The plant, where the solid digestate originated from, and the soil type influenced nitrous oxide (N2O) emissions significantly over the 38-day experiment. Composting lowered N2O emissions after soil application, whereas bentonite addition did not have a significant effect. High peaks of N2O emissions were observed during the first days after application of acidified, liquid fraction of digestate. N2O emissions were strongly correlated to initial ammonium (NH4+) content. Conclusion Fertilization with dewatered digestate (both fractions) increased N2O emission, especially when applied to soils high in nutrients and organic matter.