Publikasjoner
NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.
2007
Sammendrag
The lecture presents Biofrosk turfgrass projects with focus on variety testing
Forfattere
Trygve S. AamlidSammendrag
Dette foredraget gir en oversikt over de viktigste resultater i forskinga på gras til grøntanelgg 2003-2007.
Sammendrag
NA
Sammendrag
In the north-western European countries Norway, Sweden, United Kingdom (UK) and Ireland, variability in the forms, amounts and timing of phosphorus (P) loss from agricultural land is related to national differences in climate, soil, hydrological conditions and agricultural production. The dissolved form of P constitutes 9"93% of the total phosphorus (TP) in water, subsurface drainage can contribute 12"60% and surface erosion 40"88% of TP transfer. TP export in small agricultural streams is generally in the range 0.3"6 kg ha)1 year)1, with the highest losses in Norway and UK. All four countries are complying with the EU Water Framework Directive and developing a range of measures based on P source with transport controls over P losses. A decreasing trend in TP losses has been detected in agricultural streams following the introduction of measures to reduce erosion in Norway. Average P concentrations in Swedish streams have shown a reduction of nearly 2% per year since 1993 as a result of measures introduced in southern Sweden. However, in two large rivers in agricultural regions of Sweden, the concentrations of suspended solids (SS) and TP were shown to increase by 0.4% and 0.7% per year, respectively, over the period 1975"2004, possibly as a result of climate change. It is too early to detect trends in agricultural contributions to P in surface waters as a result of catchment-sensitive farming (CSF) in the UK and Ireland.
Forfattere
Ketil Haarstad Gro Hege LudvigsenSammendrag
Pesticides in Norwegian ground water have been monitored since 1995. Here we report data including 2004. The monitoring has focused on shallow groundwater near agricultural fields (4 locations), farm wells (22 locations) and on public water works (38 locations), 450 samples were analyzed for a total of 62 pesticide compounds and metabolites, and the result was 514 detections of single compounds. Altogether 27 pesticides and metabolites were detected; 2 insecticides, 9 fungicides and 16 herbicides. Herbicides were most frequently detected (in 79% of the samples), followed by fungicides (20%) and insecticides (1%). Pesticide concentration was generally low, although high concentrations also occurred, for example 33 "g/l of metribuzine in shallow ground water near agricultural fields, and 20 "g/l of bentazon in a farm well. Some water soluble pesticides occurred both frequently and with relatively high concentrations in shallow ground water near agricultural fields. The results show that local ground water near farms is vulnerable for contamination of pesticides and needs further monitoring. Efforts should be made to minimize contamination of wells in farming areas through education on pesticide use, monitoring and well positioning. Few pesticides were detected in ground water from water works and the concentrations were low. Monitoring of water works ended in 2002. The data show that there is a continuous need to monitor pesticides as well as selected metabolites in shallow ground water and wells near agricultural fields in Norway.
Sammendrag
Det er ikke registrert sammendrag
Sammendrag
Det er ikke registrert sammendrag
Sammendrag
Oil transportation from the Russian part of the Barents Region along the Norwegian coast had insignificant volumes before 2002. However, in 2002 there was a dramatic increase in oil shipment, when 4 million tons of oil was transported across the northern regions. In 2003, the volume reached 8 million tons. The trend continued in 2004, and about 12 million tons of export oil and oil products were delivered from the Russian part of the Barents Region to the western market along the Norwegian coast. In 2005, the oil shipment volumes dropped to 9.5 million tons, and in 2006 increased to 10.5 million tons. In the present report on oil transportation from the Russian North, we have given special attention to the description of the existing and prospective offshore and onshore oil shipment terminals, and their connection to the oil reserves on one hand and to the export routes on the other. In this report we demonstrate that even without a trunk oil pipeline to the Barents Sea coast, the annual oil exports from the Russian part of the Barents Region may reach a volume of about 50-80 million tons in the next decade. About 50 million tons of crude oil and oil products can be delivered by railway to the Murmansk ports in the Barents Sea, and Kandalaksha and Arkhangelsk in the White Sea. In addition, up to 20 million tons of oil will come from the northern oil fields in the Nenets Autonomous Region, and from Prirazlomnoye oil field in the Pechora Sea. Prirazlomnoye is the first offshore industrial oil field in the Russian part of the Barents Region, the operations there will go on all year round, and most of the year in ice-covered waters. Dolginskoye oil field, which is also in the Pechora Sea and estimated to be three times as big as Prirazlomnoye, can produce the first oil in 2013. There will be stable increase in the amounts of oil shipped from Western Siberia. The terminals in the Kara Sea can load 2-3 million tons of crude oil for transhipment in the Kola Bay of the Barents Sea. In the European part of Russia there are three possibilities for shipping oil for export. The first way is through the Black Sea via the Bosporus to the Mediterranean Sea. Another route is through the Baltic Sea via the Gulf of Finland and Kattegat. The third alternative is to transport oil through the Barents Sea along the coasts of north-western Russia and northern Norway. Out of these three options only the northern one, the Barents Sea route, can provide the possibility of stable shipping large amounts directly to European and other major harbours, avoiding the challenges of transit through the neighbouring countries or heavy traffic in the sea straits. Oil pollution prevention should be the central issue during oil transportation in the Barents Sea. In this report we pay attention to the environmental safety matters in oil transportation and Norwegian-Russian co-operation in the oil pollution prevention. The increasing internationalisation of the transport system in the region appears to affect the present trend toward more advanced and safer terminals and vessels that comply with international safety rules. Early warning and notification of ships passing through the Norwegian waters has been used more frequently and on voluntary basis, but still not as often as desired and can be arranged within a bilateral Russian-Norwegian agreement. The establishment of traffic control centres in Vardø and Murmansk will considerably improve the oil spill prevention and response preparedness.
Sammendrag
The Skjønhaug constructed wetland (CW) is a free surface water (FSW) wetland polishing chemically treated municipal wastewater in southeastern Norway and consists of three ponds as well as trickling, unsaturated filters with light weight aggregates (LWA). Fluxes of nitrous oxide (N2O) and methane (CH4) have been measured during the autumn, winter and summer from all three ponds as well as from the unsaturated filters. Physicochemical parameters of the water have been measured at the same localities. The large temporal and spatial variation of N2O fluxes was found to cover a range of -0.49 to 110 mg N2O-N m-2 day-1, while the fluxes of CH4 was found to cover a range of -1.2 to 1900 mg m-2 day-1. Thus, both emission and consumption occurred. Regarding fluxes of N2O there was a significant difference between the summer, winter and autumn, with the highest emissions occurring during the autumn. The fluxes of CH4 were, on the other hand, not significantly different with regard to seasons. Both the emission of N2O and CH4 was positively influenced by the amount of total organic carbon (TOC). The measured fluxes of N2O and CH4 are in the same range as those reported from other CWs treating wastewater. There was an approximately equal contribution to the global warming potential from N2O and CH4.
Forfattere
Trond MæhlumSammendrag
Det er ikke registrert sammendrag