Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2023

Til dokument

Sammendrag

The aim of this study was to find the chemical parameters for the differentiation of plum cultivars grown along the fjord areas of Western Norway and Eastern Norway, having specific agroclimatic conditions. Chemical analysis of the fruits confirmed the contents of 13 quantified elements, 22 sugar compounds, 11 organic acids, 19 phenolic compounds, and antioxidant activity in 68 plum cultivars. Dominated contents were noted for nitrogen (with the maximum mean value of 3.11%), potassium (8055.80 mg/kg), and phosphorous (7878.88 mg/kg). Averagely, the highest level of sugars was determined for glucose (244.46 g/kg), fructose (197.92 g/kg), sucrose (208.25 g/kg), and sorbitol (98.02 g/kg), organic acids for malic acid (24.06 g/kg), and for polyphenol compounds were 5-O-caffeoylquinic acid (66.31 mg/kg), and rutin (58.06 mg/kg). Applied principal component analysis has been useful for distinguishing the plum cultivars from three areas in Norway where copper, iron, potassium, magnesium, manganese, and sodium; sucrose, ribose, maltose, and raffinose; p-hydroxybenzoic acid, rutin, ferulic acid, kaempferol 7-O-glucoside, p-coumaric acid, and 5-Ocaffeoylquinic acid were the most influential. In regard to human health and future breeding work that will have the aim to produce functional food with high health-related compounds, the plum cultivar ‘Mallard’ should be underlined due to the high level of elements, ‘Valor’ due to high sugar content, ‘Helgøyplomme’ due to content of organic acids, and ‘Diamond’ due to the content of phenolic compounds.

Til dokument

Sammendrag

Levels of dissolved natural organic matter (DNOM) are increasing in our boreal watercourses. This is manifested by an apparent increase in its yellow to brown colour of the water, i.e., browning. Sound predictions of future changes in colour of our freshwaters is a prerequisite for predicting effects on aquatic fauna and a sustainable operation of drinking water facilities using surface waters as raw water sources. A model for the effect of climate on colour (mg Pt L-1) has been developed for two surface raw water sources in Scotland, i.e., at Bracadale and Port Charlotte. Both sites are situated far out on the Scottish west coast, without major impact of acid rain, with limited amounts of frost, and with limited recent land-use changes. The model was fitted to 15 years long data-series on colour measurements, provided by Scottish Water, at the two sites. Meteorological data were provided by UK Met. The models perform well for both sites in simulating the variation in monthly measured colour, explaining 89 and 90% of the variation at Bracadale and Port Charlotte, respectively. These well fitted models were used to predict future changes in colour due to changes in temperature and precipitation based on median climate data from a high emission climate RCP8.5 scenario from the HadCM3 climate model (UKCP18). The model predicted an increase in monthly average colour during growing season at both sites from about 150 mg Pt L-1 to about 200 mg Pt L-1 in 2050–2079. Temperature is found to be the most important positively driver for colour development at both sites.