Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2018

Til dokument

Sammendrag

Acetophenones are phenolic metabolites of plant species. A metabolic route for the biosynthesis and release of 2 defence‐related hydroxyacetophenones in white spruce (Picea glauca) was recently proposed to involve 3 phases: (a) biosynthesis of the acetophenone aglycons catalysed by a currently unknown set of enzymes, (b) formation and accumulation of the corresponding glycosides catalysed by a glucosyltransferase, and (c) release of the aglycons catalysed by a glucosylhydrolase (PgβGLU‐1). We tested if this biosynthetic model is conserved across Pinaceae and land plant species. We assayed and surveyed the literature and sequence databases for possible patterns of the presence of the acetophenone aglycons piceol and pungenol and their glucosides, as well as sequences and expression of Pgβglu‐1 orthologues. In the Pinaceae, the 3 phases of the biosynthetic model are present and differences in expression of Pgβglu‐1 gene orthologues explain some of the interspecific variation in hydroxyacetophenones. The phylogenetic signal in the metabolite phenotypes was low across species of 6 plant divisions. Putative orthologues of PgβGLU‐1 do not form a monophyletic group in species producing hydroxyacetophenones. The biosynthetic model for acetophenones appears to be conserved across Pinaceae, whereas convergent evolution has led to the production of acetophenone glucosides across land plants.

Til dokument

Sammendrag

Dengue fever is a mosquito (Aedes aegypti) ‐transmitted viral disease that is endemic in more than 125 countries around the world. There are four serotypes of the dengue virus (DENV 1‐4) and a safe and effective dengue vaccine must provide protection against all four serotypes. To date, the first vaccine, Dengvaxia (CYD‐TDV), is available after many decades’ efforts, but only has moderate efficacy. More effective and affordable vaccines are hence required. Plants offer promising vaccine production platforms and food crops offer additional advantages for the production of edible human and animal vaccines, thus eliminating the need for expensive fermentation, purification, cold storage and sterile delivery. Oral vaccines can elicit humoral and cellular immunity via both the mucosal and humoral immune systems. Here, we report the production of tetravalent EDIII antigen (EDIII‐1‐4) in stably transformed lettuce chloroplasts. Transplastomic EDIII‐1‐4‐expressing lettuce lines were obtained and homoplasmy was verified by Southern blot analysis. Expression of EDIII‐1‐4 antigens was demonstrated by immunoblotting, with the EDIII‐1‐4 antigen accumulating to 3.45% of the total protein content. Immunological assays in rabbits showed immunogenicity of EDIII‐1‐4. Our in vitro gastrointestinal digestion analysis revealed that EDIII‐1‐4 antigens are well protected when passing through the oral and gastric digestion phases but underwent degradation during the intestinal phase. Our results demonstrate that lettuce chloroplast engineering is a promising approach for future production of an affordable oral dengue vaccine.