Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2023

Til dokument

Sammendrag

Northern forest ecosystems make up an important part of the global carbon cycle. Hence, monitoring local-scale gross primary production (GPP) of Northern forest is essential for understanding climatic change impacts on terrestrial carbon sequestration and for assessing and planning management practices. Here we evaluate and compare four methods for estimating GPP using Sentinel-2 data in order to improve current available GPP estimates: four empirical regression models based on either the 2-band Enhanced Vegetation Index (EVI2) or the plant phenology index (PPI), an asymptotic light response function (LRF) model, and a light-use efficiency (LUE) model using the MOD1732 algorithm. These approaches were based on remote sensing vegetation indices, air temperature (Tair), vapor pressure deficit (VPD), and photosynthetically active radiation (PAR). The models were parametrized and evaluated using in-situ data from eleven forest sites in North Europe, covering two common forest types, evergreen needleleaf forest and deciduous broadleaf forest. Most of the models gave good agreement with eddy covariance-derived GPP. The VI-based regression models performed well in evergreen needleleaf forest (R2 = 0.69–0.78, RMSE = 1.97–2.28 g C m−2 d−1, and NRMSE =9-11.0%, eight sites), whereas the LRF and MOD17 performed slightly worse (R2 = 0.65 and 0.57, RMSE = 2.49 and 2.72 g C m−2 d−1, NRMSE = 12 and 13.0%, respectively). In deciduous broadleaf forest all models, except the LRF, showed close agreements with the observed GPP (R2 = 0.75–0.80, RMSE = 2.23–2.46 g C m−2 d−1, NRMSE = 11–12%, three sites). For the LRF model, R2 = 0.57, RMSE = 3.21 g C m−2 d−1, NRMSE = 16%. The results highlighted the necessity of improved models in evergreen needleleaf forest where the LUE approach gave poorer results., The simplest regression model using only PPI performed well beside more complex models, suggesting PPI to be a process indicator directly linked with GPP. All models were able to capture the seasonal dynamics of GPP well, but underestimation of the growing season peaks were a common issue. The LRF was the only model tending to overestimate GPP. Estimation of interannual variability in cumulative GPP was less accurate than the single-year models and will need further development. In general, all models performed well on local scale and demonstrated their feasibility for upscaling GPP in northern forest ecosystems using Sentinel-2 data.

Sammendrag

Oversikt over ICOS-Norge terrestrisk. Karbobalansen for Hurdal skogen innenfor fotavtrykk for det første hele kalenderår med målinger, 2022.

Til dokument

Sammendrag

Soil organic carbon (SOC) is the largest terrestrial carbon pool, but it is still uncertain how it will respond to climate change. Especially the fate of SOC due to concurrent changes in soil temperature and moisture is uncertain. It is generally accepted that microbially driven SOC decomposition will increase with warming, provided that sufficient soil moisture, and hence enough C substrate, is available for microbial decomposition. We use a mechanistic, microbially explicit SOC decomposition model, the Jena Soil Model (JSM), and focus on the depolymerization of litter and microbial residues by microbes. These model processes are sensitive to temperature and soil moisture content and follow reverse Michaelis-Menten kinetics. Microbial decomposition rate V of the substrate [S] is limited by the microbial biomass [B]: V = Vmax * [S] * [B]/(kMB + [B]). The maximum reaction velocity, Vmax, is temperature sensitive and follows an Arrhenius function. Also, a positive correlation between temperature and kMB-values of different enzymes has been empirically shown, with Q10 values ranging from 0.71-2.80 (Allison et al., 2018). Q10 kMB-values for microbial depolymerization of microbial residues would be low compared to those of a (lignified) litter pool. An increase in kMB leads to a lower reaction velocity (V) and V becomes less temperature sensitive at low substrate concentrations. In this work we focus on the following questions: “how do temperature and soil moisture changes affect modelled heterotrophic respiration through the Michaelis-Menten term? Is there a temperature compensation effect on modelled decomposition rate because of the counteracting temperature sensitivities of Vmax and kMB?” We model these interactions under a mean warming experiment (+3.5 °K) as well as three soil moisture experiments: constant soil moisture, a drought, and a wetting scenario.

Til dokument

Sammendrag

Utilizing forest ecosystems to mitigate climate change effects and to preserve biodiversity requires detailed insights into the feedbacks between forest type, climatic and soil conditions, and in particular forest management history and practice. Analysis of long-term observations at the site level, remote sensing proxies and understanding relevant biogeochemical and biophysical processes are key to achieving these insights. In the recently started EU H2020 project “CLimate Mitigation and Bioeconomy pathways for sustainable FORESTry” (CLIMB-FOREST), we address these issues based on intensely monitored sites with flux measurements (ICOS, Fluxnet), other ecosystem research and observation networks (eLTER, National Forest Inventories), remotely sensed observations and process understanding. This presentation outlines the activities of CLIMB-FOREST regarding (1) carbon stocks and fluxes according to stand age, species distribution, management and disturbance history; (2) biophysical effects of forest structure; (3) effects and importance of short-lived climate forcers (e.g. BVOCs) and (4) management and extreme event (drought, fire) impact on SOC and N dynamics. We also outline how the gained knowledge informs scenario runs of the Vegetation and Earth System Model RCA-GUESS in the project.

Til dokument

Sammendrag

Forest damage caused by heavy wet snow accumulation in the canopy is the second most important abiotic forest disturbance agent in Nordic conifer stands after wind. The extent and frequency of snow damage in the future climate in the Nordic region is a major uncertainty. Few mechanistic models of snow damage risk to trees exist that could support forest management scenario analysis and decision making. We propose a snow damage risk model consisting of a numerical weather prediction-based snow accumulation model for forest canopies and a mechanistic critical snow load model. Snow damage probability predictions were validated on snow breakage data from the winters of 2016 and 2018 covering 3.5 million individual trees in south-eastern Norway derived from pre- and post-damage aerial laser scanning campaigns. The proposed model demonstrated satisfactory damage and no-damage class separation with an AUC of 0.72 and 0.77 in Norway spruce and Scots pine, respectively, and an F1 score of 0.7 in conifers taller than 10 m that suffered moderate stem breakage. The model achieved a classification accuracy that is comparable to that of statistical models but is simpler and requires fewer inputs.

Til dokument

Sammendrag

We tested whether windthrow damage to Nordic conifer forest stands could be reliably detected as canopy height decrease between a pre-storm LiDAR (Light Detection and Ranging) digital surface model (DSM) and a photogrammetric DSM derived from a post-storm WorldView-3 stereo pair. The post-storm ground reference data consisted of field and unmanned aerial vehicle (UAV) observations of windthrow combined with no-damage areas collected by visual interpretation of the available very high resolution (VHR) satellite imagery. We trained and tested a thresholding model using canopy height change as the sole predictor. We undertook a two-step accuracy assessment by (1) running k-fold cross-validation on the ground reference dataset and examining the effect of the potential imperfections in the ground reference data, and (2) conducting rigorous accuracy assessment of the classified map of the study area using an extended set of VHR imagery. The thresholding model produced accurate windthrow maps in dense, productive forest stands with a sensitivity of 96%, specificity of 71%, and Matthews correlation coefficient (MCC) over 0.7. However, in sparse and high elevation stands, the classification accuracy was poor. Despite certain collection challenges during the winter months in the Nordic region, we consider VHR stereo satellite imagery to be a viable source of forest canopy height information and sufficiently accurate to map windthrow disturbance in forest stands of high to moderate density.

Sammendrag

Accurate estimation of site productivity is essential for forest projections and scenario modelling. We present and evaluate models to predict site index (SI) and whether a site is productive (potential total stem volume production ≥ 1 m3·ha−1·year−1) in a wall-to-wall high-resolution (16 m × 16 m) SI map for Norway. We investigate whether remotely sensed data improve predictions. We also study the advantages and disadvantages of using boosted regression trees (BRT), a machine-learning algorithm, to create high-accuracy SI maps. We use climatic and topographical data, soil parent material, a land resource map, and depth to water, together with Sentinel-2 satellite images and airborne laser scanning metrics, as predictor variables. We use the SI observed at more than 10 000 National Forest Inventory (NFI) sample plots throughout Norway to fit BRT models and validate the models using 5822 independent temporary plots from the NFI. We benchmark our results against SI estimates from forest monitoring inventories. We find that the SI from BRT has root mean squared error (RMSE) ranging from 2.3 m (hardwoods) to 3.6 m (spruce) when tested against independent validation data from the NFI temporary plots. These RMSEs are similar or marginally better than an evaluation of SI estimates from operational forest management plans where SI normally stems from manual photo interpretation.