Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2024

Til dokument

Sammendrag

The uptake dynamics of two sulfonamide antibiotics, two fluoroquinolone antibiotics, and the anticonvulsant carbamazepine during the cultivation of two species of edible mushrooms (Agaricus subrufescens and A. bisporus) was investigated. None of the antibiotics were accumulated by the mushrooms, while carbamazepine and its transformation product carbamazepine-10,11-epoxide were taken up by A. bisporus fruiting body but only in small amounts (up to 0.76 and 1.85 μg kg−1 dry weight, respectively). The sulfonamides were quickly removed from the mushroom growth substrate, while the recalcitrant fluoroquinolones and carbamazepine were only partially removed. Dissipation half-lives were generally lower for A. subrufescens than A. bisporus, but A. subrufescens was also grown at a slightly higher culture temperature. A. subrufescens also showed a lower uptake of contaminants. Comparison of maximum dietary intake with other common exposure sources showed that these mushrooms can safely be eaten although produced on a polluted substrate, with respect to the investigated compounds.

Til dokument

Sammendrag

Cultivation of microalgae has gained significant interest as an alternative protein source, potentially becoming a target commodity recovered from microalgae-based wastewater treatment. This study examined a semi-continuous cultivation strategy to optimize protein accumulation of the indigenous freshwater chlorophytes, Lobochlamys segnis and Klebsormidium flaccidum, and simultaneously remove nutrients from wastewater efficiently. A strain-specific regime was made based on a fixed biomass concentration at the start of 24-h cultivation cycle, i.e., a constant initial cell density, which regulated harvesting and fresh medium supply volume according to the dilution rate. Six cultivation cycles were conducted in lab-scale 1L reactors with a synthetic municipal wastewater. Lobochlamys segnis and K. flaccidum grew exponentially in all cycles. The biomass productivity was 573 and 580 mg L–1 day–1, in which the total protein consisted of 62 and 45% of dry cell weight (dw), respectively. When a culture medium deficient in nitrogen and phosphorus was used, protein level was significantly reduced. L. segnis consumed all NH4+ and PO43– supplied by the medium replacement, giving the removal rate of 9.2 and 5.2 mg L–1 day–1. Whereas K. flaccidum removed 13.8 mg L–1 day–1 NH4+ without completing PO43– removal. The amino acid profile of both strains was characterized by glutamic acids content (4–5% dw). We concluded that the designed cultivation regime would support a constant biomass production with stable and high protein content, along with an efficient removal of nutrient from the wastewater.

Til dokument

Sammendrag

Exploring the complex mechanism of anaerobic digestion with hydrothermal pretreatment (HTAD) for biomass efficiently and optimising the reaction conditions are critical to improving the performance of methane production. This study used H2O automated machine learning (AutoML) for comprehensive prediction, analysis, and targeted optimization of the HTAD system. An IterativeImputer system for data filling was constructed. The comparison of three basic regressors showed that random forest performed optimally for filling (R2 > 0.95). The gradient boosting machine (GBM) model was searched by H2O AutoML to show optimal performance in prediction (R2 > 0.96). The software was developed based on the GBM model, and two prediction schemes were devised. The generalization error of the software was less than 10%. The Shapley Additive exPlanations value showed that solid to liquid ratio, hydrothermal pretreatment (HT) temperature, and particle size have greater potential for improving cumulative methane production (CMP). A Bayesian-HTAD optimization strategy was devised, using the Bayesian optimization to directionally optimize the reaction conditions, and performing experiments to validate the results. The experimental results showed that the CMP was significantly improved by 51.63%. Compared to the response surface methodology, the Bayesian optimization relatively achieved a 2.21–2.50 times greater effect. Mechanism analyses targeting the experiments showed that HT was conducive to improving the relative abundance of Sphaerochaeta, Methanosaeta, and Methanosarcina. This research achieved accurate prediction and targeted optimization for the HTAD system and proposed multiple filling, prediction, and optimization strategies, which are expected to provide an AutoML optimization paradigm for anaerobic digestion in the future.

Til dokument

Sammendrag

The use of bio-based composites to enhance the methane production in anaerobic digestion has attracted considerable attention. Nevertheless, the study of electron transfer mechanisms and the applications of biochar/MnO2 (MBC) in complex systems remains largely unexplored. Biochar composited with MnO2 at 10:1 mass ratio (MBC10) increased the content of volatile fatty acids by 9.09 % during acidogenic phase. During the methanogenic experiments using acetate, cumulative methane production (CMP) rose by 5.83 %, and in the methanogenic experiments using food waste, CMP increased by 24.32 %. Microbial community analysis indicated an enrichment of Syntrophomonas, Bacilli, and Methanosaetaceae in the MBC10 group. This enrichment occurred mainly due to the redox capability of MnO2 enhancing MBC capacitance, thereby facilitating microbial electron transfer processes. Additionally, under 2 g/L ammonia nitrogen concentration and 30 g/L organic load, the CMP of MBC10 increased by 12.74 % and 9.44 %, respectively, compared to the BC600 group. This study illuminates MBC's electron transfer mechanisms and applications, facilitating its wider practical adoption and fostering future innovations.